विवश सामान्यीकृत व्युत्क्रम

From Vigyanwiki
Revision as of 18:08, 6 August 2023 by alpha>Ummai hani

रैखिक बीजगणित में, एक अतिरिक्त बाधा के साथ रैखिक समीकरणों की एक प्रणाली का समाधान करके एक बाधित सामान्यीकृत व्युत्क्रम प्राप्त किया जाता है कि समाधान किसी दिए गए उप-स्थान में है। एक यह भी कहता है कि समस्या का वर्णन बाधित रैखिक समीकरणों की एक प्रणाली द्वारा किया गया है।

कई व्यावहारिक समस्याओं में समाधान समीकरणों की एक रैखिक प्रणाली का

केवल तभी स्वीकार्य है जब यह के एक निश्चित रैखिक उपस्थान में हो।

निम्नलिखित में, पर ओर्थोगोनल प्रक्षेपण को द्वारा दर्शाया जाएगा। रैखिक समीकरणों की विवश प्रणाली

इसका कोई समाधान है यदि और केवल यदि समीकरणों की अप्रतिबंधित प्रणाली हो

हल करने योग्य है. यदि उपस्थान का एक उचित उपस्थान है , फिर अप्रतिबंधित समस्या का मैट्रिक्स सिस्टम मैट्रिक्स होने पर भी एकवचन हो सकता है बाधित समस्या का समाधान उलटा है (उस स्थिति में, ). इसका मतलब यह है कि किसी को विवश समस्या के समाधान के लिए सामान्यीकृत व्युत्क्रम का उपयोग करने की आवश्यकता है। तो, का एक सामान्यीकृत उलटा ए भी कहा जाता है -बाधित छद्मविपरीत .

छद्म व्युत्क्रम का एक उदाहरण जिसका उपयोग किसी विवश समस्या के समाधान के लिए किया जा सकता है वह है बॉटल-डफिन व्युत्क्रम करने के लिए बाध्य , जिसे समीकरण द्वारा परिभाषित किया गया है

यदि दाहिनी ओर व्युत्क्रम मौजूद है।

श्रेणी:मैट्रिसेस