विवश सामान्यीकृत व्युत्क्रम
रैखिक बीजगणित में, एक अतिरिक्त बाधा के साथ रैखिक समीकरणों की एक प्रणाली का समाधान करके एक विवश सामान्यीकृत व्युत्क्रम प्राप्त किया जाता है कि समाधान किसी दिए गए उप-स्थान में है। एक यह भी कहता है कि समस्या का वर्णन विवश रैखिक समीकरणों की एक प्रणाली द्वारा किया गया है।
कई व्यावहारिक समस्याओं में, समीकरण
की एक रैखिक प्रणाली का समाधान तभी स्वीकार्य होता है जब यह के एक निश्चित रैखिक उपस्थान में होता है।
निम्नलिखित में, पर ओर्थोगोनल प्रक्षेपण को द्वारा दर्शाया जाता हैं। रैखिक समीकरणों
की विवश प्रणाली का कोई समाधान है यदि और केवल यदि समीकरण
की अप्रतिबंधित प्रणाली समाधान करने योग्य है। यदि उप-स्थान , का एक उचित उप-स्थान है, तो अप्रतिबंधित समस्या का आव्यूह एकवचन हो सकता है, तथापि विवश समस्या का प्रणाली आव्यूह व्युत्क्रम (उस स्थिति में, ) है। इसका अर्थ यह है कि किसी को विवश समस्या के समाधान के लिए सामान्यीकृत व्युत्क्रम का उपयोग करने की आवश्यकता है। तो, के सामान्यीकृत व्युत्क्रम को का -विवश छद्म व्युत्क्रम भी कहा जाता है।
छद्म व्युत्क्रम का एक उदाहरण जिसका उपयोग किसी विवश समस्या के समाधान के लिए किया जा सकता है, वह के लिए बाध्य का बॉटल-डफिन व्युत्क्रम है, जिसे समीकरण
द्वारा परिभाषित किया गया है, यदि दाईं ओर व्युत्क्रम उपस्थित है।