संख्यात्मक प्रसार
संख्यात्मक प्रसार एक समस्या है जो निरंतरता के कंप्यूटर सिमुलेशन के साथ होती है, जैसे कि फ्लूइड्स (द्रव्य) में, जिसमें सिमुलेशन माध्यम वास्तविक माध्यम की तुलना में अधिक प्रसारशीलता प्रदर्शित करती है। यह घटना विशेष रूप से गंभीर हो सकती है जब सिस्टम बिल्कुल भी प्रसारित नहीं होती, जैसे कि एक आईडियल फ्लूइड जो किसी संख्यात्मक मॉडल में कुछ कल्पनागत श्लेषकता प्राप्त कर रहा हो।
स्पष्टीकरण
यूलेरियन विधि में, समय और स्थान को एक अलग ग्रिड में विभाजित किया जाता है और गति के निरंतर अंतर समीकरण को परिमित-अंतर समीकरणो में विभाजित किया जाता है।[1] असतत समीकरण सामान्यतः मूल अंतर समीकरणों की तुलना में अधिक प्रसार वाले होते हैं, जिससे अनुरूपित प्रणाली इच्छित भौतिक प्रणाली से भिन्न व्यवहार करती है।[2] अंतर की मात्रा और चरित्र सिम्युलेटेड सिस्टम और उपयोग किए जाने वाले विवेक के प्रकार पर निर्भर करता है। अधिकांश द्रव गतिकी या मैग्नेटोहाइड्रोडायनामिक्स सिमुलेशन उच्च निष्ठा प्राप्त करने के लिए संख्यात्मक प्रसार को न्यूनतम संभव तक कम करने का प्रयास करते हैं - लेकिन कुछ परिस्थितियों में गणितीय विलक्षणता से बचने के लिए प्रसार को सोच समझ कर सिस्टम में जोड़ा जाता है।
उदाहरण के लिए, तरल पदार्थ में शॉक तरंगें और प्लाज्मा में करंट शीट कुछ अनुमानों में असीम रूप से पतली होती हैं; इससे संख्यात्मक कोड के लिए कठिनाई हो सकती है। कठिनाई से बचने का एक आसान तरीका प्रसार जोड़ना है जो सदमे या वर्तमान शीट को सुचारू बनाता है। उच्च क्रम की संख्यात्मक विधियों (वर्णक्रमीय विधियों सहित) में निम्न क्रम की विधियों की तुलना में कम संख्यात्मक प्रसार होता है।
उदाहरण के रूप में, फ्लूइड में शॉक वेव और प्लाज्मा में करंट शीट कुछ अनुमानों में अनंतता की तुलना में बहुत पतली होते हैं; इसका कुछ संख्यात्मक कोडों के लिए समस्या उत्पन्न कर सकता है। इस समस्या को बचने का एक सरल विधि यह है कि प्रसार जो शॉक या करंट शीट को कोमल करता है, तथा उसे जोड़ता है। उच्च-क्रम संख्यात्मक विधियाँ कम-क्रम संख्यात्मक विधियों की तुलना में अधिक संख्यात्मक प्रसार रखती हैं।
उदाहरण
एक संख्यात्मक विसरण के उदाहरण के रूप में, एक यूलेरियन सिमुलेशन को विचार करें जिसमें एक ग्रीन रंग के रंग का एक बूंद जल के माध्यम से विसरण हो रहा हो। यूलेरियन सिमुलेशन में, विसरण का प्रतिस्पंदनीय समय-आगे बढ़ाने का उपयोग किया जाता है। जब एक ग्रीन रंग की बूंद पानी में डाली जाती है, तो वह बूंद अपने आसपास के पानी से विसरित होती है। यद्यपि, विसरण की सिमुलेशन करते समय, विसरणीय प्रक्रिया के छोटे समय-चरण का उपयोग किया जाता है जिससे पूर्वानुमानित परिणाम मिल सकें।
एक सामान्यतया यूलेरियन सिमुलेशन में, समय को छोटे समय-ध्रुव के इंटरवल में विभाजित किया जाता है। लेकिन विसरणीय प्रक्रिया में छोटे समय-ध्रुव का उपयोग करने से अवगतता के कारण आकलनीय त्रुटि हो सकती है। इसे "संख्यात्मक प्रतिरोधकता" या "संख्यात्मक विलयन" कहा जाता है।
संख्यात्मक विसरण का मुख्य कारण यह होता है कि यूलेरियन सिमुलेशन में समय-ध्रुव को बहुत छोटा चुना जाता है, जिससे बूंद का विसरण प्रक्रिया बड़े स्तर पर विचलित हो जाता है। इससे सिमुलेशन के परिणाम को प्रभावित किया जा सकता है और विसरणीय प्रक्रिया का सही प्रतिस्पंदन दिखाई नहीं देता है।
इसलिए, संख्यात्मक विसरण एक त्रुटिपूर्ण अवगतता की समस्या है जो समय-ध्रुव को बहुत छोटे इंटरवल में विभाजित करके सिमुलेशन के नतीजों को अनुशासित बना सकती है। इसे सुधारने के लिए, और उत्तम समय-ध्रुव और विसरणीय तरंगों का उपयोग करके सिमुलेशन को अधिक नियंत्रित बनाया जा सकता है।
यह भी देखें
- झूठा प्रसार
- संख्यात्मक फैलाव
- संख्यात्मक त्रुटि