संभावना-अनुपात परीक्षण

From Vigyanwiki
Revision as of 15:10, 11 July 2023 by alpha>Artiverma

आंकड़ों में, संभावना-अनुपात परीक्षण दो प्रतिस्पर्धी सांख्यिकीय मॉडलों के फिट होने की अच्छाई का आकलन करता है, विशेष रूप से पूरे पैरामीटर स्थान पर गणितीय अनुकूलन द्वारा पाया जाता है और दूसरा उनके संभावना फ़ंक्शन के अनुपात के आधार पर कुछ बाधा (गणित) लगाने के बाद पाया जाता है। यदि बाधा (यानी, शून्य परिकल्पना) को अहसास (संभावना) द्वारा समर्थित किया जाता है, तो दो संभावनाओं में नमूनाकरण त्रुटि से अधिक अंतर नहीं होना चाहिए।[1] इस प्रकार संभाव्यता-अनुपात परीक्षण परीक्षण करता है कि क्या यह अनुपात से सांख्यिकीय महत्व है, या समकक्ष क्या इसका प्राकृतिक लघुगणक शून्य से काफी भिन्न है।

संभाव्यता-अनुपात परीक्षण, जिसे विल्क्स परीक्षण भी कहा जाता है,[2] लैग्रेंज गुणक परीक्षण और वाल्ड परीक्षण सहित, परिकल्पना परीक्षण के तीन शास्त्रीय दृष्टिकोणों में से सबसे पुराना है।[3] वास्तव में, बाद वाले दो को संभावना-अनुपात परीक्षण के सन्निकटन के रूप में परिकल्पित किया जा सकता है, और स्पर्शोन्मुख रूप से समतुल्य हैं।[4][5][6] दो मॉडलों की तुलना करने के मामले में, जिनमें से प्रत्येक में कोई अज्ञात सांख्यिकीय पैरामीटर नहीं है, संभावना-अनुपात परीक्षण का उपयोग नेमैन-पियर्सन लेम्मा द्वारा उचित ठहराया जा सकता है। लेम्मा दर्शाता है कि परीक्षण में सभी प्रतिस्पर्धियों के बीच उच्चतम सांख्यिकीय शक्ति है।[7]


परिभाषा

सामान्य

मान लीजिए कि हमारे पास सांख्यिकीय पैरामीटर वाला सांख्यिकीय मॉडल है . शून्य परिकल्पना को अक्सर पैरामीटर कहकर बताया जाता है निर्दिष्ट उपसमुच्चय में है का . वैकल्पिक परिकल्पना इस प्रकार है के पूरक (सेट सिद्धांत) में है , यानी में , जिसे द्वारा दर्शाया जाता है . शून्य परिकल्पना के लिए संभावना अनुपात परीक्षण आँकड़ा द्वारा दिया गया है:[8]

जहां कोष्ठक के अंदर की मात्रा को संभावना अनुपात कहा जाता है। यहां ही अंकन सर्वोच्च को संदर्भित करता है। चूँकि सभी संभावनाएँ सकारात्मक हैं, और चूँकि बाधित अधिकतम अप्रतिबंधित अधिकतम से अधिक नहीं हो सकता है, संभावना अनुपात शून्य और के बीच निर्धारित है।

अक्सर संभावना-अनुपात परीक्षण आँकड़ा लॉग-संभावनाओं के बीच अंतर के रूप में व्यक्त किया जाता है

कहाँ

अधिकतम संभावना फ़ंक्शन का लघुगणक है , और विशेष मामले में अधिकतम मान है कि शून्य परिकल्पना सत्य है (लेकिन जरूरी नहीं कि ऐसा मान हो जो अधिकतम हो नमूना किए गए डेटा के लिए) और

संबंधित arg अधिकतम और उन अनुमत श्रेणियों को निरूपित करें जिनमें वे अंतर्निहित हैं। -2 से गुणा करने पर गणितीय रूप से यह सुनिश्चित होता है (विल्क्स प्रमेय द्वारा) ची-वर्ग वितरण होने के लिए स्पर्शोन्मुख रूप से अभिसरण होता है|χ²-वितरित यदि शून्य परिकल्पना सत्य होती है।[9] संभावना-अनुपात परीक्षणों के नमूनाकरण वितरण आम तौर पर अज्ञात हैं।[10] संभावना-अनुपात परीक्षण के लिए आवश्यक है कि मॉडल सांख्यिकीय मॉडल#नेस्टेड मॉडल हों - यानी अधिक जटिल मॉडल को पहले के मापदंडों पर बाधाएं लगाकर सरल मॉडल में बदला जा सकता है। कई सामान्य परीक्षण आँकड़े नेस्टेड मॉडल के लिए परीक्षण हैं और इन्हें लॉग-संभावना अनुपात या उसके अनुमान के रूप में व्यक्त किया जा सकता है: उदाहरण के लिए Z-परीक्षण|Z-परीक्षण, F-परीक्षण|F-परीक्षण, G-परीक्षण|G-परीक्षण, और पियर्सन का ची-स्क्वेर्ड परीक्षण; विद्यार्थी के t-test#One-sample t-test|one-sample t-test के उदाहरण के लिए, नीचे देखें।

यदि मॉडल नेस्टेड नहीं हैं, तो संभावना-अनुपात परीक्षण के बजाय, परीक्षण का सामान्यीकरण होता है जिसका आमतौर पर उपयोग किया जा सकता है: विवरण के लिए, सापेक्ष संभावना देखें।

सरल परिकल्पनाओं का मामला

सरल-बनाम-सरल परिकल्पना परीक्षण में शून्य परिकल्पना और वैकल्पिक परिकल्पना दोनों के तहत पूरी तरह से निर्दिष्ट मॉडल होते हैं, जो सुविधा के लिए काल्पनिक पैरामीटर के निश्चित मूल्यों के संदर्भ में लिखे जाते हैं। :

इस मामले में, किसी भी परिकल्पना के तहत, डेटा का वितरण पूरी तरह से निर्दिष्ट है: अनुमान लगाने के लिए कोई अज्ञात पैरामीटर नहीं हैं। इस मामले के लिए, संभावना-अनुपात परीक्षण का प्रकार उपलब्ध है:[11]<रेफरी नाम= स्टुअर्ट एट अल। 20.10–20.13 >Stuart, A.; Ord, K.; Arnold, S. (1999), Kendall's Advanced Theory of Statistics, vol. 2A, Arnold, §§20.10–20.13</ref>

कुछ पुराने संदर्भ उपरोक्त फ़ंक्शन के व्युत्क्रम को परिभाषा के रूप में उपयोग कर सकते हैं।[12] इस प्रकार, यदि वैकल्पिक मॉडल शून्य मॉडल से बेहतर है तो संभावना अनुपात छोटा है।

संभाव्यता-अनुपात परीक्षण निम्नानुसार निर्णय नियम प्रदान करता है:

अगर , अस्वीकार मत करो ;
अगर , अस्वीकार करना ;
अगर , अस्वीकार करना संभाव्यता के साथ .

मूल्य और आमतौर पर निर्दिष्ट महत्व स्तर प्राप्त करने के लिए चुना जाता है , संबंध के माध्यम से

नेमैन-पियर्सन लेम्मा का कहना है कि यह संभावना-अनुपात परीक्षण सभी स्तरों के बीच सांख्यिकीय शक्ति है इस मामले के लिए परीक्षण.[7]<रेफरी नाम= स्टुअर्ट एट अल। 20.10–20.13 />

व्याख्या

संभावना अनुपात डेटा का कार्य है ; इसलिए, यह आँकड़ा है, हालाँकि यह असामान्य है कि आँकड़े का मान पैरामीटर पर निर्भर करता है, . यदि इस आँकड़े का मान बहुत छोटा है तो संभावना-अनुपात परीक्षण शून्य परिकल्पना को अस्वीकार कर देता है। कितना छोटा कितना छोटा है यह परीक्षण के महत्व स्तर पर निर्भर करता है, यानी टाइप I त्रुटि की किस संभावना को सहनीय माना जाता है (टाइप I त्रुटियों में अशक्त परिकल्पना की अस्वीकृति शामिल होती है जो सत्य है)।

अंश शून्य परिकल्पना के तहत देखे गए परिणाम की संभावना से मेल खाता है। हर देखे गए परिणाम की अधिकतम संभावना से मेल खाता है, पूरे पैरामीटर स्थान पर अलग-अलग पैरामीटर। इस अनुपात का अंश हर से कम है; इसलिए, संभावना अनुपात 0 और 1 के बीच है। संभावना अनुपात के कम मूल्यों का मतलब है कि देखे गए परिणाम विकल्प की तुलना में शून्य परिकल्पना के तहत घटित होने की बहुत कम संभावना थी। आँकड़ों के उच्च मूल्यों का मतलब है कि देखा गया परिणाम शून्य परिकल्पना के तहत विकल्प के रूप में घटित होने की लगभग संभावना थी, और इसलिए शून्य परिकल्पना को अस्वीकार नहीं किया जा सकता है।

उदाहरण

निम्नलिखित उदाहरण से अनुकूलित और संक्षिप्त किया गया है Stuart, Ord & Arnold (1999, §22.2).

मान लीजिए कि हमारे पास आकार का यादृच्छिक नमूना है n, ऐसी आबादी से जो सामान्य रूप से वितरित है। दोनों का मतलब, μ, और मानक विचलन, σ, जनसंख्या अज्ञात है। हम परीक्षण करना चाहते हैं कि माध्य किसी दिए गए मान के बराबर है या नहीं, μ0 .

इस प्रकार, हमारी शून्य परिकल्पना है H0μ = μ0  और हमारी वैकल्पिक परिकल्पना है H1μμ0 . संभाव्यता फलन है

कुछ गणना (यहां छोड़ दी गई) के साथ, इसे दिखाया जा सकता है

कहाँ t टी-सांख्यिकी है|t-सांख्यिकी के साथ n − 1 स्वतंत्रता की कोटियां। इसलिए हम ज्ञात सटीक वितरण का उपयोग कर सकते हैं tn−1 निष्कर्ष निकालने के लिए.

स्पर्शोन्मुख वितरण: विल्क्स प्रमेय

यदि किसी विशेष शून्य और वैकल्पिक परिकल्पना के अनुरूप संभावना अनुपात का वितरण स्पष्ट रूप से निर्धारित किया जा सकता है तो इसका उपयोग सीधे निर्णय क्षेत्र बनाने (शून्य परिकल्पना को बनाए रखने या अस्वीकार करने के लिए) के लिए किया जा सकता है। हालाँकि, ज्यादातर मामलों में, विशिष्ट परिकल्पनाओं के अनुरूप संभावना अनुपात का सटीक वितरण निर्धारित करना बहुत मुश्किल है।[citation needed]

यह मानते हुए H0 सच है, सैमुअल एस विल्क्स द्वारा मौलिक परिणाम है: नमूना आकार के रूप में अनंत तक पहुंचता है|, परीक्षण आँकड़ा ऊपर परिभाषित एसिम्प्टोटिक सिद्धांत (सांख्यिकी) ची-स्क्वेर्ड वितरण होगा | ची-स्क्वेर्ड वितरित () स्वतंत्रता की डिग्री (सांख्यिकी) के साथ आयामीता में अंतर के बराबर और .[13] इसका तात्पर्य यह है कि विभिन्न प्रकार की परिकल्पनाओं के लिए, हम संभावना अनुपात की गणना कर सकते हैं डेटा के लिए और फिर देखे गए की तुलना करें तक अनुमानित सांख्यिकीय परीक्षण के रूप में वांछित सांख्यिकीय महत्व के अनुरूप मूल्य। अन्य ्सटेंशन मौजूद हैं.[which?]

यह भी देखें

संदर्भ

  1. King, Gary (1989). Unifying Political Methodology : The Likelihood Theory of Statistical Inference. New York: Cambridge University Press. p. 84. ISBN 0-521-36697-6.
  2. Li, Bing; Babu, G. Jogesh (2019). सांख्यिकीय अनुमान पर एक स्नातक पाठ्यक्रम. Springer. p. 331. ISBN 978-1-4939-9759-6.
  3. Maddala, G. S.; Lahiri, Kajal (2010). अर्थमिति का परिचय (Fourth ed.). New York: Wiley. p. 200.
  4. Buse, A. (1982). "The Likelihood Ratio, Wald, and Lagrange Multiplier Tests: An Expository Note". The American Statistician. 36 (3a): 153–157. doi:10.1080/00031305.1982.10482817.
  5. Pickles, Andrew (1985). संभावना विश्लेषण का एक परिचय. Norwich: W. H. Hutchins & Sons. pp. 24–27. ISBN 0-86094-190-6.
  6. Severini, Thomas A. (2000). सांख्यिकी में संभावना पद्धतियाँ. New York: Oxford University Press. pp. 120–121. ISBN 0-19-850650-3.
  7. 7.0 7.1 Neyman, J.; Pearson, E. S. (1933), "On the problem of the most efficient tests of statistical hypotheses" (PDF), Philosophical Transactions of the Royal Society of London A, 231 (694–706): 289–337, Bibcode:1933RSPTA.231..289N, doi:10.1098/rsta.1933.0009, JSTOR 91247
  8. Koch, Karl-Rudolf (1988). रैखिक मॉडल में पैरामीटर अनुमान और परिकल्पना परीक्षण. New York: Springer. p. 306. ISBN 0-387-18840-1.
  9. Silvey, S.D. (1970). सांख्यिकीय निष्कर्ष. London: Chapman & Hall. pp. 112–114. ISBN 0-412-13820-4.
  10. Mittelhammer, Ron C.; Judge, George G.; Miller, Douglas J. (2000). अर्थमितीय नींव. New York: Cambridge University Press. p. 66. ISBN 0-521-62394-4.
  11. Mood, A.M.; Graybill, F.A.; Boes, D.C. (1974). सांख्यिकी के सिद्धांत का परिचय (3rd ed.). McGraw-Hill. §9.2.
  12. Cox, D. R.; Hinkley, D. V. (1974), Theoretical Statistics, Chapman & Hall, p. 92, ISBN 0-412-12420-3
  13. Wilks, S.S. (1938). "मिश्रित परिकल्पनाओं के परीक्षण के लिए संभावना अनुपात का बड़ा-नमूना वितरण". Annals of Mathematical Statistics. 9 (1): 60–62. doi:10.1214/aoms/1177732360.


अग्रिम पठन


बाहरी संबंध