सेंट्रोसिमेट्रिक मैट्रिक्स

From Vigyanwiki
Revision as of 08:45, 24 July 2023 by alpha>Artiverma
सेंट्रोसिमेट्रिक 5×5 आव्यूह का समरूपता पैटर्न

गणित में, विशेष रूप से रैखिक बीजगणित और आव्यूह (गणित) में, सेंट्रोसिमेट्रिक आव्यूह आव्यूह होता है जो अपने केंद्र के विषय में सममित होता है। अधिक त्रुटिहीन रूप से, n×n आव्यूह A = [Ai,j] सेंट्रोसिमेट्रिक है जब इसकी प्रविष्टियाँ संतुष्ट होती हैं

Ai,j = Ani + 1,nj + 1 i, j ∊{1, ..., n} के लिए है।

यदि J n×n विनिमय आव्यूह को प्रतिविकर्ण पर 1 और अन्यत्र 0 के साथ दर्शाता है (अर्थात, Ji,n + 1 − i = 1; Ji,j = 0 यदि j ≠ n +1− i), तो आव्यूह A सेंट्रोसिमेट्रिक है यदि और केवल यदि AJ = JA।

उदाहरण

  • सभी 2×2 सेंट्रोसिमेट्रिक आव्यूह का रूप होता है,
  • सभी 3×3 सेंट्रोसिमेट्रिक आव्यूह का रूप होता है,
  • सममित टोप्लिट्ज़ आव्यूह सेंट्रोसिमेट्रिक आव्यूह हैं।

बीजगणितीय संरचना और गुण

  • यदि A और B क्षेत्र (गणित) एफ पर सेंट्रोसिमेट्रिक आव्यूह हैं, तो F में किसी भी c के लिए A + B और cA भी हैं। इसके अतिरिक्त, आव्यूह उत्पाद AB सेंट्रोसिमेट्रिक है, क्योंकि JAB = AJB = ABJ होते हैं। चूँकि पहचान आव्यूह भी सेंट्रोसिमेट्रिक है, यह इस प्रकार है कि F पर n×n सेंट्रोसिमेट्रिक आव्यूह का सेट सभी n×n आव्यूह के साहचर्य बीजगणित के क्षेत्र पर बीजगणित का उप-बीजगणित है।
  • यदि A, m-आयामी आइगेनबेसिस वाला सेंट्रोसिमेट्रिक आव्यूह है, तो इसके m आइगेनवेक्टर्स को चुना जा सकता है ताकि वे या तो x = Jx या x = −Jx को संतुष्ट करें जहां J एक्सचेंज आव्यूह है।
  • यदि A अलग-अलग eigenvalues ​​​​के साथ सेंट्रोसिमेट्रिक आव्यूह है, तो A के साथ आव्यूह को कम्यूट करने वाले आव्यूह को सेंट्रोसिमेट्रिक होना चाहिए।[1]*m × m सेंट्रोसिमेट्रिक आव्यूह में अद्वितीय तत्वों की अधिकतम संख्या है है।

संबंधित संरचनाएं

n×n आव्यूह A को तिरछा-सेंट्रोसिमेट्रिक कहा जाता है यदि इसकी प्रविष्टियाँ A को संतुष्ट करती हैंi,j = −एni+1,nj+1 i, j ∊ {1, ..., n} के लिए। समान रूप से, यदि AJ = −JA है, तो A तिरछा-सेंट्रोसिमेट्रिक है, जहां J ऊपर परिभाषित विनिमय आव्यूह है।

सेंट्रोसिमेट्रिक संबंध AJ = JA खुद को प्राकृतिक सामान्यीकरण के लिए उधार देता है, जहां J को अनैच्छिक आव्यूह K (यानी, K) से बदल दिया जाता है।2 = मैं)[2][3][4] या, अधिक सामान्यतः, आव्यूह K, K को संतुष्ट करता हैm = I पूर्णांक m > 1 के लिए।[1] रूपान्तरण संबंध के लिए उलटी समस्या AK = KA निश्चित आव्यूह ए के साथ आवागमन करने वाले सभी अनैच्छिक K की पहचान करने का भी अध्ययन किया गया है।[1]

सममित आव्यूह सेंट्रोसिमेट्रिक आव्यूह को कभी-कभी द्विसममित आव्यूह कहा जाता है। जब फ़ील्ड (गणित) वास्तविक संख्याओं का क्षेत्र होता है, तो यह दिखाया गया है कि द्विसममितीय आव्यूह वास्तव में वे सममित आव्यूह होते हैं जिनके eigenvalue एक्सचेंज आव्यूह द्वारा पूर्व या बाद के गुणन के बाद संभावित संकेत परिवर्तनों से अलग रहते हैं।[3] समान परिणाम हर्मिटियन आव्यूह सेंट्रोसिमेट्रिक और स्क्यू-सेंट्रोसिमेट्रिक आव्यूह के लिए है।[5]

संदर्भ

  1. 1.0 1.1 1.2 Yasuda, Mark (2012). "कम्यूटिंग और एंटी-कम्यूटिंग एम-इन्वोल्यूशन के कुछ गुण". Acta Mathematica Scientia. 32 (2): 631–644. doi:10.1016/S0252-9602(12)60044-7.
  2. Andrew, Alan (1973). "कुछ आव्यूहों के eigenvectors". Linear Algebra Appl. 7 (2): 151–162. doi:10.1016/0024-3795(73)90049-9.
  3. 3.0 3.1 Tao, David; Yasuda, Mark (2002). "A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices". SIAM J. Matrix Anal. Appl. 23 (3): 885–895. doi:10.1137/S0895479801386730.
  4. Trench, W. F. (2004). "सामान्यीकृत समरूपता या तिरछी समरूपता वाले मैट्रिक्स की विशेषता और गुण". Linear Algebra Appl. 377: 207–218. doi:10.1016/j.laa.2003.07.013.
  5. Yasuda, Mark (2003). "हर्मिटियन सेंट्रोसिमेट्रिक और हर्मिटियन स्क्यू-सेंट्रोसिमेट्रिक के-मैट्रिसेस का एक वर्णक्रमीय लक्षण वर्णन". SIAM J. Matrix Anal. Appl. 25 (3): 601–605. doi:10.1137/S0895479802418835.


अग्रिम पठन


बाहरी संबंध