शूर अपघटन

From Vigyanwiki
Revision as of 16:52, 21 July 2023 by alpha>Saurabh

रैखिक बीजगणित के गणित अनुशासन में, शूर अपघटन या शूर त्रिभुज, जिसका नाम इसाई शूर के नाम पर रखा गया है, मैट्रिक्स अपघटन है। यह किसी को अनेैतिक रूप से जटिल वर्ग मैट्रिक्स को ऊपरी-त्रिकोणीय मैट्रिक्स के मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं।

मैट्रिक्स समकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्णकक्ष के रूप में लिखने की अनुमति देता है जिसके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं।सके विकर्ण तत्व मूल मैट्रिक्स के आइगेनवैल्यू हैं

कथन

शूर अपघटन इस प्रकार पढ़ता है: यदि A जटिल संख्या प्रविष्टियों के साथ एक n × n वर्ग मैट्रिक्स है, तो A के रूप में व्यक्त किया जा सकता है[1][2][3]

जहां Q एकात्मक मैट्रिक्स है (जिससे इसका व्युत्क्रम −1Q भी Q का संयुग्मी स्थानान्तरण Q* हो), और U ऊपरी त्रिकोणीय मैट्रिक्स है, जिसे A का 'शूर फॉर्म' कहा जाता है। चूँकि U, A के समान (रैखिक बीजगणित) है, और चूंकि यह त्रिकोणीय है, इसलिए इसके आइगेनवैल्यूज़ यू की विकर्ण प्रविष्टियां हैं।

शूर अपघटन का तात्पर्य है कि ए-अपरिवर्तनीय उप-स्थानों का नेस्टेड अनुक्रम उपस्थित है {0} = V0V1 ⊂ ⋯ ⊂ Vn = Cn, और यह कि क्रमबद्ध ऑर्थोनॉर्मल आधार उपस्थित है (Cn मानक हर्मिटियन रूप के लिए) इस प्रकार कि नेस्टेड अनुक्रम में होने वाले प्रत्येक i के लिए प्रथम i आधार सदिशों Vi का विस्तार करता है। कुछ अलग ढंग से वाक्यांशित, पहला भाग कहता है कि जटिल परिमित-आयामी वेक्टर स्थान पर रैखिक ऑपरेटर जे ऑर्बिट और स्टेबलाइजर्स पूर्ण ध्वज (रैखिक बीजगणित) (V1, ..., Vn) को स्थिर करता है।

प्रमाण

शूर अपघटन के लिए रचनात्मक प्रमाण इस प्रकार है: जटिल परिमित-आयामी वेक्टर स्थान पर प्रत्येक ऑपरेटर A में आइगेनवेल्यू λ होता है, जो कुछ आइजेनस्पेस Vλ के अनुरूप होता है। मान लीजिए Vλ इसके ऑर्थोगोनल पूरक है। यह स्पष्ट है कि, इस ऑर्थोगोनल अपघटन के संबंध में, A में मैट्रिक्स प्रतिनिधित्व है (कोई यहां क्रमशः Vλ और Vλ तक फैले किसी भी ऑर्थोनॉर्मल आधार Z1 और Z2 को चुन सकता है)

जहां Iλ Vλ पर पहचान ऑपरेटर है। A22 को छोड़कर उपरोक्त मैट्रिक्स ऊपरी-त्रिकोणीय होगा। किंतु सम्पूर्ण रूप में यही प्रक्रिया सब-मैट्रिक्स A22 पर भी क्रियान्वित की जा सकती है जिसे Vλ और इसके सबमैट्रिसेस पर ऑपरेटर के रूप में देखा गया है। इस प्रकार तब तक जारी रखें जब तक परिणामी मैट्रिक्स ऊपरी त्रिकोणीय न हो जाए। चूँकि प्रत्येक संयुग्मन ऊपरी-त्रिकोणीय ब्लॉक के आयाम को कम से कम बढ़ाता है, इसलिए इस प्रक्रिया में अधिकतम n चरण लगते हैं। इस प्रकार स्थान Cn समाप्त हो जाएगा और प्रक्रिया ने वांछित परिणाम प्राप्त कर लिया है।[4]

उपरोक्त तर्क को थोड़ा इस प्रकार दोहराया जा सकता है: मान लीजिए कि λ, A का आइगेनवैल्यूज़ है, जो कुछ ईजेनस्पेस Vλ के अनुरूप है। A ऑपरेटर T को भागफल स्थान (रैखिक बीजगणित) Cn/Vλ पर प्रेरित करता है। यह ऑपरेटर ऊपर से सम्पूर्ण रूप में A22 सबमैट्रिक्स है। पहले की तरह, T के पास ईजेनस्पेस होगा, मान लीजिए WμCn modulo Vλ. ध्यान दें की भागफल मानचित्र के अंतर्गत Wμ की पूर्वछवि A का अपरिवर्तनीय उपस्थान है जिसमे Vλ सम्मिलित है। इस तरह से जारी रखें जब तक कि परिणामी भागफल स्थान का आयाम 0 न हो जाए। फिर प्रत्येक चरण पर पाए जाने वाले आइगेनस्पेस की क्रमिक पूर्वछवियाँ ध्वज बनाती हैं जिसे A स्थिर करता है।

टिप्पणियाँ

चूँकि प्रत्येक वर्ग मैट्रिक्स में एक शूर अपघटन होता है, सामान्यतः यह अपघटन अद्वितीय नहीं होता है। उदाहरण के लिए, आइजेनस्पेस Vλ का आयाम > 1 हो सकता है, ऐसी स्थिति में Vλ के लिए कोई भी ऑर्थोनॉर्मल आधार वांछित परिणाम की ओर ले जाएगा।

त्रिकोणीय मैट्रिक्स U को U = D + N के रूप में लिखें, जहां D विकर्ण है और N सख्ती से ऊपरी त्रिकोणीय है (और इस प्रकार एक शून्यपोटेंट मैट्रिक्स है)। विकर्ण मैट्रिक्स D में अनेैतिक रूप से क्रम में A के eigenvalues ​​सम्मिलित हैं (इसलिए इसका फ्रोबेनियस मानदंड, वर्ग, A के eigenvalues ​​के वर्ग मापांक का योग है, जबकि A का फ्रोबेनियस मानदंड, वर्ग, A के वर्ग एकवचन मानों का योग है)। निलपोटेंट भाग N सामान्यतः अद्वितीय नहीं है, किंतु इसका फ्रोबेनियस मानदंड विशिष्ट रूप से A द्वारा निर्धारित किया जाता है (सिर्फ इसलिए कि A का फ्रोबेनियस मानदंड U = D + N के फ्रोबेनियस मानदंड के सामान्तर है)।[5]

It is clear that if A is a normal matrix, then U from its Schur decomposition must be a diagonal matrix and the column vectors of Q are the eigenvectors of A. Therefore, the Schur decomposition extends the spectral decomposition. In particular, if A is positive definite, the Schur decomposition of A, its spectral decomposition, and its singular value decomposition coincide.

A commuting family {Ai} of matrices can be simultaneously triangularized, i.e. there exists a unitary matrix Q such that, for every Ai in the given family, Q Ai Q* is upper triangular. This can be readily deduced from the above proof. Take element A from {Ai} and again consider an eigenspace VA. Then VA is invariant under all matrices in {Ai}. Therefore, all matrices in {Ai} must share one common eigenvector in VA. Induction then proves the claim. As a corollary, we have that every commuting family of normal matrices can be simultaneously diagonalized.

In the infinite dimensional setting, not every bounded operator on a Banach space has an invariant subspace. However, the upper-triangularization of an arbitrary square matrix does generalize to compact operators. Every compact operator on a complex Banach space has a nest of closed invariant subspaces.

गणना

किसी दिए गए मैट्रिक्स के शूर अपघटन की गणना क्यूआर एल्गोरिदम या इसके वेरिएंट द्वारा संख्यात्मक रूप से की जाती है। दूसरे शब्दों में, मैट्रिक्स के अनुरूप विशेषता बहुपद की जड़ों की शूर अपघटन प्राप्त करने के लिए आवश्यक रूप से गणना नहीं की जाती है। इसके विपरीत, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए विशेषता बहुपद की जड़ों की गणना करने के लिए उसके साथी मैट्रिक्स के शूर अपघटन का पता लगाकर किया जा सकता है। इसी तरह, क्यूआर एल्गोरिदम का उपयोग किसी दिए गए मैट्रिक्स के आइगेनवैल्यू की गणना करने के लिए किया जाता है, जो शूर अपघटन के ऊपरी त्रिकोणीय मैट्रिक्स की विकर्ण प्रविष्टियां हैं। यद्यपि क्यूआर एल्गोरिथ्म औपचारिक रूप से संचालन का अनंत अनुक्रम है, मशीन परिशुद्धता के लिए अभिसरण व्यावहारिक रूप से बिग ओ नोटेशन में प्राप्त किया जाता है |परिचालन.[6] LAPACK उपयोगकर्ता गाइड में नॉनसिमेट्रिक ईजेनप्रॉब्लम्स अनुभाग देखें।[7]

अनुप्रयोग

झूठ सिद्धांत अनुप्रयोगों में सम्मिलित हैं:

सामान्यीकृत शूर अपघटन

वर्ग आव्यूह ए और बी को देखते हुए, 'सामान्यीकृत शूर अपघटन' दोनों आव्यूहों को इस प्रकार गुणनखंडित करता है और , जहां Q और Z एकात्मक मैट्रिक्स हैं, और S और T ऊपरी त्रिकोणीय हैं। सामान्यीकृत शूर अपघटन को कभी-कभी 'क्यूजेड अपघटन' भी कहा जाता है।[2]: 375 

सामान्यीकृत आइगेनवैल्यूज़ जो मैट्रिक्स#अतिरिक्त विषयों के ईगेंडेकंपोजीशन को हल करता है (जहाँ x अज्ञात अशून्य सदिश है) की गणना S के विकर्ण तत्वों और T के विकर्ण तत्वों के अनुपात के रूप में की जा सकती है। अर्थात्, मैट्रिक्स तत्वों को निरूपित करने के लिए सबस्क्रिप्ट का उपयोग करते हुए, iवां सामान्यीकृत आइगेनवैल्यूज़ संतुष्ट .

संदर्भ

  1. Horn, R.A. & Johnson, C.R. (1985). मैट्रिक्स विश्लेषण. Cambridge University Press. ISBN 0-521-38632-2. (Section 2.3 and further at p. 79)
  2. 2.0 2.1 Golub, G.H. & Van Loan, C.F. (1996). मैट्रिक्स संगणना (3rd ed.). Johns Hopkins University Press. ISBN 0-8018-5414-8.(Section 7.7 at p. 313)
  3. Schott, James R. (2016). सांख्यिकी के लिए मैट्रिक्स विश्लेषण (3rd ed.). New York: John Wiley & Sons. pp. 175–178. ISBN 978-1-119-09247-6.
  4. Wagner, David. "Proof of Schur's Theorem" (PDF). Notes on Linear Algebra.
  5. Higham, Nick. "What Is a Schur Decomposition?".
  6. Trefethen, Lloyd N.; Bau, David (1997). संख्यात्मक रैखिक बीजगणित. Philadelphia: Society for Industrial and Applied Mathematics. pp. 193–194. ISBN 0-89871-361-7. OCLC 36084666.{{cite book}}: CS1 maint: date and year (link)
  7. Anderson, E; Bai, Z; Bischof, C; Blackford, S; Demmel, J; Dongarra, J; Du Croz, J; Greenbaum, A; Hammarling, S; McKenny, A; Sorensen, D (1995). लैपैक उपयोगकर्ता मार्गदर्शिका. Philadelphia, PA: Society for Industrial and Applied Mathematics. ISBN 0-89871-447-8.