परिमित-रैंक संक्रियक

From Vigyanwiki

फंक्शनल विश्लेषण में, जो गणित की एक शाखा, एक परिमित-रैंक संक्रियक बानाख (बनच) -समष्‍टि के बीच परिबद्ध रैखिक संक्रियक होता है जिसकी सीमा परिमित-विमीय है।[1]

हिल्बर्ट समष्‍टि पर परिमित-रैंक संक्रियक

कैनॉनिकल प्रारूप

परिमित-रैंक संक्रियक अनंत-विमीय परिस्थितियों में परिवर्तित किए गए संख्यात्मक मैट्रिक्स होते हैं (सीमित आकार के)। इस तरह, इन संक्रियकों को रैखिक बीजगणित तकनीकों के माध्यम से वर्णित किया जा सकता है।

रैखिक बीजगणित से, हम जानते हैं कि एक आयताकार मैट्रिक्स, जटिल प्रविष्टियों के साथ, की रैंक होती है यदि और केवल यदि निम्न के रूप में हो

यदि एक हिलबर्ट अंतर्वाल पर एक संक्रियक की रैंक है, तो समान्य तरीके से यह साबित करता है कि:

जहां पर स्थितियाँ परिमित विमीय स्थितियों के समान हैं।

इसलिए, प्रेरण द्वारा, परिमित रैंक का एक संक्रियक फॉर्म लेता है

जहां और अर्थोनॉर्मल आधार हैं। ध्यान दें कि यह मूलतः एक सिंगुलर मूल्य विघटन का पुनर्वक्तव्य है। इसे परिमित-रैंक संक्रियकों के कैनोनिक रूप के रूप में कहा जा सकता है।

स्वयं एक सामान्यीकरण करते हुए, यदि संक्रियक अब गणनीय अनंत अंतराली है और घनात्मक संख्याओं की श्रेणी केवल पर समग्र होती है, तो संक्रियक एक संक्षेपित संक्रियक बन जाता है, और इस स्थिति में, संक्षेपित संक्रियकों के लिए कैनोनिक रूप होता है।

यदि श्रेणी कनवर्जेंट है, तो एक ट्रेस क्लास संक्रियक है।

बीजगणितीय प्रगुण

हिल्बर्ट समष्‍टि पर परिमित-रैंक संक्रियक का समूह में उभय पक्षीय *-आदेश बनाता है, जो पर परिबद्ध संक्रियकों की बीजगणित है। वास्तव में यह ऐसे आदर्शों के बीच न्यूनतम तत्व है, अर्थात, में से किसी भी दो-तरफा *-आदर्श में परिमित-रैंक संक्रियक सम्मिलित होना चाहिए। इसे साबित करना कठिन नहीं है। किसी भी गैर-शून्य संक्रियक को लें, तब के लिए कुछ होगा। यह पर्याप्त है कि किसी भी के लिए, श्रेणी-1 संक्रियक जो को में अभिविन्यस्त करता है, में स्थित होता है। को उस श्रेणी-1 संक्रियक के रूप में परिभाषित करें जो को में अभिविन्यस्त करता है, और को भी तदनुसार।

जिसका अर्थ है कि में है और यह दावे की पुष्टि करता है।

में दो-तरफा *-आइडियल्स के कुछ उदाहरण ट्रेस-क्लास, हिल्बर्ट-श्मिट संक्रियक्स और कॉम्पैक्ट संक्रियक हैं। इन तीनों आदर्शों में, उनके संबंधित मानदंडों में सघन है।

चूंकि में किसी भी दो-तरफा आदर्श में होना चाहिए, बीजगणित सरल है और केवल तभी जब यह परिमित विमीय है।

बानाख समष्‍टि पर परिमित-रैंक संक्रियक

बानाख समष्टियों के बीच एक परिमित-रैंक संक्रियक परिबद्ध संक्रियक है, जिसकी चेतना (रेंज) सीमित विमीय है। हिलबर्ट समष्टियों के स्थिति की तरह, इसे निम्नलिखित रूप में लिखा जा सकता है:

जहां अब , और समष्‍टि पर बंधे हुए रैखिक कार्यात्मक हैं।

एक परिबद्ध रैखिक संवाहक एक परिमित-रैंक संक्रियक का एक विशेष प्रकार है, जो एक रैंक-एक है।

संदर्भ

  1. "परिमित रैंक ऑपरेटर - एक सिंहावलोकन". 2004.