दूसरा परिमाणीकरण
Quantum field theory |
---|
History |
द्वितीय क्वान्टीकरण, जिसे व्यवसाय संख्या प्रतिनिधित्व भी कहा जाता है, एक औपचारिकता है जिसका उपयोग क्वांटम यांत्रिकी एन-बॉडी समस्या - कई-बॉडी सिस्टम का वर्णन और विश्लेषण करने के लिए किया जाता है। क्वांटम क्षेत्र सिद्धांत में, इसे विहित परिमाणीकरण के रूप में जाना जाता है, जिसमें क्षेत्रों (सामान्यतः पदार्थ के तरंग फलन के रूप में) को क्षेत्र संचालकों के रूप में माना जाता है, उसी तरह जैसे भौतिक मात्राएं (स्थिति, गति, आदि) होती हैं प्रथम परिमाणीकरण में संचालक के रूप में सोचा गया है। इस पद्धति के प्रमुख विचार 1927 में पॉल डिराक द्वारा प्रस्तुत किये गये थे।[1] और बाद में, विशेष रूप से, पास्कल जॉर्डन [2] और व्लादिमीर फॉक द्वारा विकसित किए गए थे।[3][4]
इस दृष्टिकोण में, क्वांटम अनेक-निकाय अवस्था को फॉक अवस्था के आधार पर दर्शाया जाता है, जिसका निर्माण प्रत्येक एकल-कण अवस्था को एक निश्चित संख्या में समान कणों से भरकर किया जाता है।[5] दूसरी परिमाणीकरण औपचारिकता फॉक अवस्था के निर्माण और प्रबंधन के लिए सृजन और विलोपन संचालकों का परिचय देती है, जो क्वांटम मेनी बॉडी थ्योरी (कई- पिण्ड सिद्धांत) के अध्ययन के लिए उपयोगी उपकरण प्रदान करती है।
क्वांटम अनेक-निकाय अवस्थाएँ
दूसरे परिमाणीकरण औपचारिकता का प्रारंभिक बिंदु क्वांटम यांत्रिकी में कणों के समान कणों की धारणा है। चिरसम्मत यांत्रिकी के विपरीत, जहां प्रत्येक कण को एक विशिष्ट स्थिति वेक्टर द्वारा लेबल किया जाता है और के सेट के विभिन्न विन्यास क्वांटम यांत्रिकी में, कण अलग-अलग अनेक-निकाय स्थितियों के अनुरूप होते हैं, कण समान होते हैं, जैसे कि दो कणों का आदान-प्रदान होता है, यानी , एक भिन्न अनेक-निकाय क्वांटम अवस्था की ओर नहीं ले जाता है। इसका तात्पर्य यह है कि दो कणों के आदान-प्रदान के तहत क्वांटम मल्टी-बॉडी तरंग फलन अपरिवर्तनीय (एक चरण कारक तक) होना चाहिए। कणों के कण आँकड़ों के अनुसार, कण विनिमय के तहत अनेक-निकाय तरंग फलन या तो सममित या एंटीसिमेट्रिक हो सकते हैं:
यह विनिमय समरूपता गुण अनेक-निकाय तरंग फलन पर बाधा डालता है। हर बार जब एक कण को अनेक-निकाय प्रणाली से जोड़ा या हटाया जाता है, तो समरूपता बाधा को पूरा करने के लिए तरंग फलन को ठीक से सममित या विरोधी-सममित होना चाहिए। पहले परिमाणीकरण औपचारिकता में, एकल-कण अवस्था के स्थायी (गणित) (बोसॉन के लिए) या निर्धारक (फर्मियन के लिए) के रैखिक संयोजन के रूप में तरंग फलन का प्रतिनिधित्व करके इस बाधा की गारंटी दी जाती है। दूसरे परिमाणीकरण औपचारिकता में, निर्माण और विलोपन संचालकों द्वारा समरूपता के मुद्दे का स्वचालित रूप से ध्यान रखा जाता है, ताकि इसका अंकन बहुत सरल हो सके।
प्रथम-मात्राबद्ध अनेक-निकाय तरंग फलन
एकल-कण तरंग फलन के एक पूर्ण सेट पर विचार करें द्वारा लेबल किया गया (जो कई क्वांटम संख्याओं का संयुक्त सूचकांक हो सकता है)। निम्नलिखित तरंग फलन
एक N-कण अवस्था का प्रतिनिधित्व करता है जिसमें ith कण एकल-कण अवस्था में होता है . शॉर्टहैंड नोटेशन में, तरंग फलन की स्थिति तर्क को छोड़ा जा सकता है, और यह माना जाता है कि ith एकल-कण तरंग फलन ith कण की स्थिति का वर्णन करता है। तरंग फलन सममित या विरोधी सममित नहीं किया गया है, इस प्रकार सामान्यतः समान कणों के लिए अनेक-निकाय तरंग फलन के रूप में योग्य नहीं है। हालाँकि, संचालकों द्वारा इसे सममित (सममित-विरोधी) रूप में लाया जा सकता है सममिति के लिए, और प्रतिसंतुलनकर्ता के लिए.
बोसॉन के लिए, बहु-निकाय तरंग फलन को सममित होना चाहिए,
जबकि फर्मिऑन के लिए, बहु-निकाय तरंग फलन को सममिति-विरोधी होना चाहिए,
यहाँ N-बॉडी क्रमपरिवर्तन समूह (या सममित समूह) में एक तत्व है , जो अवस्था लेबल के बीच क्रम परिवर्तन करता है , और क्रमपरिवर्तन की संगत समता को दर्शाता है। सामान्यीकरण संचालक है जो तरंग फलन को सामान्य करता है। (यह संचालक है जो डिग्री n के सममित टेंसरों के लिए एक उपयुक्त संख्यात्मक सामान्यीकरण कारक लागू करता है; इसके मूल्य के लिए अगला भाग देखें।)
यदि कोई मैट्रिक्स में एकल-कण तरंग फलन को व्यवस्थित करता है, जैसे कि पंक्ति-आई कॉलम-जे मैट्रिक्स तत्व है , तो बोसॉन मल्टी-बॉडी तरंग फलन को केवल स्थायी (गणित) के रूप में लिखा जा सकता है , और फर्मियन अनेक-निकाय तरंग एक निर्धारक के रूप में कार्य करती है (स्लेटर निर्धारक के रूप में भी जाना जाता है)।[6]
द्वितीय-मात्राबद्ध फॉक अवस्थाएँ
प्रथम परिमाणित तरंग फलन में भौतिक रूप से साकार होने योग्य अनेक-निकाय अवस्थाओं का वर्णन करने के लिए जटिल सममितीकरण प्रक्रियाएँ सम्मिलित होती हैं क्योंकि प्रथम परिमाणीकरण की भाषा अप्रभेद्य कणों के लिए अनावश्यक होती है। पहली परिमाणीकरण भाषा में, अनेक-निकाय अवस्था का वर्णन प्रश्नों की एक श्रृंखला का उत्तर देकर किया जाता है जैसे कि कौन सा कण किस अवस्था में है? हालाँकि ये भौतिक प्रश्न नहीं हैं, क्योंकि कण समान हैं, और यह बताना असंभव है कि कौन सा कण पहले स्थान पर है। प्रतीत होता है कि अलग-अलग अवस्था हैं और वास्तव में एक ही क्वांटम अनेक-निकाय अवस्था के अनावश्यक नाम हैं। इसलिए पहले परिमाणीकरण विवरण में इस अतिरेक को समाप्त करने के लिए सममितीकरण (या विरोधी सममितीकरण) को पेश किया जाना चाहिए।
दूसरी परिमाणीकरण भाषा में, प्रत्येक कण से यह पूछने के बजाय कि वह किस अवस्था में है, यह पूछा जाता है कि प्रत्येक अवस्था में कितने कण हैं? क्योंकि यह विवरण कणों के लेबलिंग का उल्लेख नहीं करता है, इसमें कोई अनावश्यक जानकारी नहीं है, और इसलिए क्वांटम अनेक-निकाय अवस्था का सटीक और सरल विवरण मिलता है। इस दृष्टिकोण में, अनेक-निकाय अवस्था को व्यवसाय संख्या के आधार पर दर्शाया जाता है, और आधार अवस्था को व्यवसाय संख्याओं के सेट द्वारा लेबल किया जाता है, जिसे दर्शाया जाता है
तात्पर्य कि हैं एकल-कण अवस्था में कण (या जैसे ). व्यवसाय संख्याओं का योग कणों की कुल संख्या से होता है, अर्थात . फर्मियन के लिए, व्यवसाय संख्या पाउली अपवर्जन सिद्धांत के कारण, केवल 0 या 1 हो सकता है; जबकि बोसॉन के लिए यह कोई भी गैर- ऋणात्मक पूर्णांक हो सकता है
व्यवसाय क्रमांक बताता है इन्हें फॉक स्टेट्स के नाम से भी जाना जाता है। सभी फ़ॉक अवस्था बहु-निकाय हिल्बर्ट समष्टि , या फॉक समष्टि का पूर्ण आधार बनाते हैं। किसी भी सामान्य क्वांटम अनेक-निकाय अवस्था को फॉक अवस्थाओं के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।
ध्यान दें कि अधिक कुशल भाषा प्रदान करने के अलावा, फ़ॉक समष्टि कणों की एक परिवर्तनीय संख्या की अनुमति देता है। हिल्बर्ट समष्टि के रूप में, यह पिछले अनुभाग में वर्णित n-कण बोसोनिक या फर्मिओनिक टेंसर समष्टि के योग के लिए आइसोमोर्फिक है, जिसमें एक-आयामी शून्य-कण समष्टि 'C' भी सम्मिलित है।
शून्य के बराबर सभी व्यवसाय संख्याओं वाली फॉक अवस्था को निर्वात अवस्था कहा जाता है, जिसे दर्शाया गया है . केवल एक गैर-शून्य व्यवसाय संख्या वाला फॉक अवस्था एक एकल-मोड फॉक अवस्था है, जिसे दर्शाया गया है . पहले परिमाणित तरंग फलन के संदर्भ में, निर्वात अवस्था इकाई टेंसर उत्पाद है और इसे दर्शाया जा सकता है . एकल-कण अवस्था इसके तरंग कार्य में कम हो जाती है . अन्य एकल-मोड अनेक-निकाय (बोसोन) स्थितियाँ उस मोड के तरंग फलन के टेंसर उत्पाद मात्र हैं, जैसे कि और . मल्टी-मोड फ़ॉक अवस्थाओं के लिए (अर्थात् एक से अधिक एकल-कण अवस्थाएँ सम्मिलित है), संबंधित प्रथम-मात्राकृत तरंग फलन को कण आंकड़ों के अनुसार उचित समरूपता की आवश्यकता होगी, उदाहरण के लिए बोसॉन अवस्था के लिए, और एक फर्मियन अवस्था के लिए (प्रतीक बीच में और सरलता के लिए छोड़ दिया गया है)। सामान्यतः सामान्यीकरण पाया जाता है , जहां N कणों की कुल संख्या है। फर्मियन के लिए, यह अभिव्यक्ति कम हो जाती है जैसा केवल शून्य या एक ही हो सकता है। तो फॉक अवस्था के अनुरूप प्रथम-मात्राबद्ध तरंग फलन को कह सकते है
बोसॉन के लिए और
- फर्मियन के लिए. ध्यान दें कि फर्मियन के लिए, केवल, इसलिए ऊपर दिया गया टेंसर उत्पाद प्रभावी रूप से सभी व्याप्त एकल-कण अवस्था पर एक उत्पाद मात्र है।
सृजन और विलोपन संचालक
सृजन और विलोपन संचालकों को अनेक-निकाय प्रणाली में एक कण जोड़ने या हटाने के लिए पेश किया जाता है। ये संचालक दूसरे परिमाणीकरण औपचारिकता के मूल में हैं, जो पहले और दूसरे परिमाण वाले अवस्था के बीच के अंतर को औपचारिक रूप देते हैं। सृजन (विलोपन) संचालक को पहले-क्वांटाइज़्ड कई-बॉडी तरंग फलन पर लागू करने से कण आंकड़ों के आधार पर सममित तरीके से तरंग फलन से एकल-कण स्थिति सम्मिलित (डिलीट) जाएगी। दूसरी ओर, सभी द्वितीय-मात्राबद्ध फ़ॉक अवस्था का निर्माण, निर्माण संचालकों को बार-बार वैक्यूम अवस्था में लागू करके किया जा सकता है।
सृजन और विलोपन संचालक (बोसॉन के लिए) मूल रूप से क्वांटम हार्मोनिक दोलक के संदर्भ में ऊपर उठाने और कम करने वाले संचालकों के रूप में बनाए गए हैं, जिन्हें फिर क्वांटम क्षेत्र सिद्धांत में फ़ील्ड संचालकों के लिए सामान्यीकृत किया जाता है।[7] वे क्वांटम अनेक-निकाय सिद्धांत के लिए मौलिक हैं, इस अर्थ में कि प्रत्येक अनेक-निकाय संचालक (अनेक-निकाय प्रणाली के हैमिल्टनियन और सभी भौतिक अवलोकनों सहित) को उनके संदर्भ में व्यक्त किया जा सकता है।
सम्मिलन और विलोपन संचालन
किसी कण का निर्माण और विलोपन प्रथम परिमाणित तरंग फलन से एकल-कण अवस्था को सममित या विरोधी-सममित तरीके से सम्मिलित और विलोपन द्वारा कार्यान्वित किया जाता है। होने देना एक एकल-कण अवस्था हो, मान लीजिए 1 टेंसर पहचान है (यह शून्य-कण स्थान C का जनरेटर है और संतुष्ट करता है) मौलिक हिल्बर्ट स्थान पर टेंसर बीजगणित में), और चलो एक सामान्य टेंसर उत्पाद स्थिति बनते है। प्रविष्टि और विलोपन संचालक निम्नलिखित पुनरावर्ती समीकरणों द्वारा परिभाषित रैखिक संचालक हैं
- सामान्यतः
यहाँ क्रोनकर डेल्टा प्रतीक है, जो 1 यदि देता है , और 0 अन्यथा देता है। सबस्क्रिप्ट सम्मिलन या विलोपन संचालक इंगित करता है कि क्या सममितीकरण (बोसॉन के लिए) या एंटी-सममितीकरण (फर्मियन के लिए) लागू किया गया है।
बोसॉन निर्माण और विलोपन संचालक
बोसोन निर्माण (सम्मान विलोपन) संचालक को सामान्यतः के रूप में दर्शाया जाता है (सम्मान. ). सृजन संचालक एकल-कण अवस्था में बोसोन जोड़ता है , और विलोपन संचालिका एकल-कण अवस्था से बोसोन को हटा देता है . सृजन और संहार संचालक एक दूसरे से संयुग्मित हर्मिटियन हैं, लेकिन उनमें से कोई भी हर्मिटियन संचालक नहीं हैं ().
परिभाषा
बोसोन निर्माण (विलोपन) संचालक एक रैखिक संचालक है, जिसकी क्रिया n-कण प्रथम-मात्रा तरंग फलन पर होती है परिभाषित किया जाता है
जहाँ एकल-कण अवस्था सम्मिलित करता है में संभावित सम्मिलन स्थिति सममित रूप से, और एकल-कण स्थिति को हटा देता है से संभावित विलोपन स्थिति सममित रूप से।
उदाहरण
इसके बाद टेंसर प्रतीक सरलता के लिए एकल-कण अवस्थाओं के बीच को छोड़ दिया गया है। अवस्था ले लीजिये , अवस्था पर एक और बोसोन बनाएं ,
फिर अवस्था से एक बोसोन का सफाया कर दें ,
फॉक अवस्था पर कार्रवाई
एकल-मोड निर्वात अवस्था से प्रारंभ करना , निर्माण संचालक को लागू करना बार-बार, यह पाया गया है
निर्माण संचालक बोसॉन व्यवसाय संख्या को 1 से बढ़ा देता है। इसलिए, सभी व्यवसाय संख्या अवस्था का निर्माण बोसॉन निर्माण संचालक द्वारा निर्वात अवस्था से किया जा सकता है।
दूसरी ओर, विलोपन संचालक बोसोन व्यवसाय संख्या को 1 से कम कर देता है
यह निर्वात अवस्था को भी शांत कर देगा क्योंकि निर्वात अवस्था में नष्ट होने के लिए कोई बोसोन नहीं बचा है। उपरोक्त सूत्रों का प्रयोग करके यह दर्शाया जा सकता है कि
तात्पर्य है कि बोसोन संख्या संचालक को परिभाषित करता है।
उपरोक्त परिणाम को बोसॉन की किसी भी फॉक अवस्था के लिए सामान्यीकृत किया जा सकता है।
इन दो समीकरणों को दूसरे-परिमाणीकरण औपचारिकता में बोसॉन निर्माण और विलोपन संचालकों के परिभाषित गुणों के रूप में माना जा सकता है। अंतर्निहित प्रथम-क्वांटाइज़्ड तरंग फलन की जटिल सममिति का निर्माण और विलोपन संचालकों द्वारा स्वचालित रूप से ध्यान रखा जाता है (जब पहले-क्वांटाइज़्ड तरंग फलन पर कार्य किया जाता है), ताकि जटिलता दूसरे-क्वांटाइज़्ड स्तर पर प्रकट न हो, और द्वितीय-परिमाणीकरण सूत्र सरल और साफ-सुथरे हैं।
संचालक पहचान
फॉक अवस्था पर बोसॉन निर्माण और विलोपन संचालकों की कार्रवाई से निम्नलिखित संचालक पहचान का पता चलता है,
इन रूपान्तरण संबंधों को बोसॉन निर्माण और विलोपन संचालकों की बीजगणितीय परिभाषा के रूप में माना जा सकता है। तथ्य यह है कि कण विनिमय के तहत बोसॉन अनेक-निकाय तरंग फलन सममित है, बोसॉन संचालकों के रूपान्तरण द्वारा भी प्रकट होता है।
क्वांटम हार्मोनिक दोलक के ऊपर उठाने और कम करने वाले संचालक भी कम्यूटेशन संबंधों के समान सेट को संतुष्ट करते हैं, जिसका अर्थ है कि बोसॉन की व्याख्या एक दोलक के ऊर्जा क्वांटा (फोनन) के रूप में की जा सकती है। एक हार्मोनिक दोलक (या हार्मोनिक दोलन मोड का एक संग्रह) की स्थिति और गति संचालकों को फोनन निर्माण और विलोपन संचालकों के हर्मिटियन संयोजनों द्वारा दिया जाता है,
जो स्थिति और गति संचालकों के बीच विहित कम्यूटेशन संबंध को पुन: उत्पन्न करता है (साथ)। )
इस विचार को क्वांटम क्षेत्र सिद्धांत में सामान्यीकृत किया गया है, जो पदार्थ क्षेत्र के प्रत्येक मोड को क्वांटम उतार-चढ़ाव के अधीन एक दोलक के रूप में मानता है, और बोसॉन को क्षेत्र के उत्तेजना (या ऊर्जा क्वांटा) के रूप में माना जाता है।
फर्मियन निर्माण और विलोपन संचालक
फर्मियन निर्माण (विलोपन) संचालिका को सामान्यतः इस रूप में दर्शाया जाता है (). सृजन संचालक एकल-कण अवस्था में एक फर्मियन जोड़ता है , और विलोपन संचालिका एकल-कण अवस्था से एक फर्मियन को हटा देता है .
परिभाषा
फ़र्मियन क्रिएशन (विलोपन) संचालक एक रैखिक संचालक है, जिसकी क्रिया एन-कण प्रथम-मात्रा तरंग फलन पर होती है परिभाषित किया जाता है
जहाँ एकल-कण अवस्था सम्मिलित करता है में सम्भावित सम्मिलन स्थितियाँ सममिति-विरोधी हैं, और एकल-कण स्थिति को हटा देता है से संभावित विलोपन स्थितियाँ सममिति-विरोधी हैं।
दो (या अधिक) फर्मियन की अवस्थाओं पर सृजन और विलोपन संचालकों के परिणामों को देखना विशेष रूप से शिक्षाप्रद है, क्योंकि वे विनिमय के प्रभावों को प्रदर्शित करते हैं। नीचे दिए गए उदाहरण में कुछ उदाहरणात्मक संचालन दिए गए हैं। दो-फर्मियन अवस्था पर सृजन और विलोपन संचालकों के लिए संपूर्ण बीजगणित क्वांटम फोटोनिक्स में पाया जा सकता है।[8]
उदाहरण
इसके बाद टेंसर प्रतीक सरलता के लिए एकल-कण अवस्थाओं के बीच को छोड़ दिया गया है। अवस्था मान लीजिये , पर एक और फर्मियन बनाने का प्रयास अवस्था संपूर्ण अनेक-निकाय तरंग फलन को शांत कर देगा,
पर एक फर्मियन को नष्ट करें अवस्था,
अवस्था मान लीजिये ,
माइनस साइन (फर्मियन साइन के रूप में जाना जाता है) फर्मियन तरंग फलन की एंटी-सिमेट्रिक प्रॉपर्टी के कारण प्रकट होता है।
फॉक अवस्था पर कार्रवाई
एकल-मोड निर्वात अवस्था से प्रारंभ करना , फर्मियन क्रिएशन संचालक को लागू करना ,
यदि एकल-कण अवस्था निर्वात है, सृजन संचालक अवस्था को फर्मियन से भर देगा। हालाँकि, यदि अवस्था पहले से ही एक फर्मियन द्वारा प्रयास कर लिया गया है, तो सृजन संचालक का आगे का आवेदन अवस्था को शांत कर देगा, पॉली अपवर्जन सिद्धांत का प्रदर्शन करेगा कि दो समान फर्मियन एक ही अवस्था पर एक साथ प्रयास नहीं कर सकते हैं। फिर भी, फर्मियन विलोपन संचालक द्वारा फर्मियन को कब्जे वाले अवस्था से हटाया जा सकता है ,
निर्वात अवस्था को विलोपन संचालक की कार्रवाई से शांत करया जाता है।
बोसॉन केस के समान, फर्मियन फॉक अवस्था का निर्माण फर्मियन क्रिएशन संचालक का उपयोग करके निर्वात अवस्था से किया जा सकता है
इसे जांचना (गणना द्वारा) आसान है
तात्पर्य है कि फर्मियन नंबर संचालक को परिभाषित करता है।
उपरोक्त परिणाम को फर्मियन की किसी भी फॉक अवस्था के लिए सामान्यीकृत किया जा सकता है।
याद रखें कि व्यवसाय संख्या फर्मिऑन के लिए केवल 0 या 1 ही ले सकते हैं। इन दो समीकरणों को दूसरे परिमाणीकरण औपचारिकता में फर्मियन निर्माण और विलोपन संचालकों के परिभाषित गुणों के रूप में माना जा सकता है। ध्यान दें कि फर्मियन साइन संरचना , जिसे जॉर्डन-विग्नर परिवर्तन के रूप में भी जाना जाता है, जॉर्डन-विग्नर स्ट्रिंग के लिए एकल-कण अवस्था (स्पिन संरचना) के पूर्वनिर्धारित क्रम की आवश्यकता होती है। और इसमें सभी पूर्ववर्ती अवस्था की फर्मियन व्यवसाय संख्या की गिनती सम्मिलित है; इसलिए फर्मियन निर्माण और विलोपन संचालकों को कुछ अर्थों में गैर-स्थानीय माना जाता है। यह अवलोकन इस विचार की ओर ले जाता है कि फ़र्मियन लंबी दूरी की उलझी हुई स्थानीय qubit प्रणाली में उभरते हुए कण हैं।[10]
संचालक पहचान
निम्नलिखित संचालक पहचान फॉक अवस्था पर फर्मियन निर्माण और विलोपन संचालकों की कार्रवाई से अनुसरण करती हैं,
इन विरोधी कम्यूटेशन संबंधों को फर्मियन निर्माण और विलोपन संचालकों की बीजगणितीय परिभाषा के रूप में माना जा सकता है। तथ्य यह है कि कण विनिमय के तहत फर्मियन कई-बॉडी तरंग फलन एंटी-सिमेट्रिक है, फर्मियन संचालकों के एंटी-कम्यूटेशन द्वारा भी प्रकट होता है।
सृजन और संहार संचालक एक दूसरे से संयुग्मित हर्मिटियन हैं, लेकिन उनमें से कोई भी हर्मिटियन संचालक नहीं हैं (). फर्मियन निर्माण और विलोपन संचालकों का हर्मिटियन संयोजन
मेजराना फर्मियन संचालक कहलाते हैं। उन्हें फर्मिओनिक हार्मोनिक दोलक की स्थिति और गति संचालकों के फर्मोनिक एनालॉग के रूप में देखा जा सकता है। वे एंटीकम्युटेशन संबंध को संतुष्ट करते हैं
जहाँ किसी भी मेजराना फर्मियन संचालकों को समान स्तर पर लेबल करता है (चाहे उनकी उत्पत्ति जटिल फर्मियन संचालकों के रे या आईएम संयोजन से हुई हो) ). एंटीकम्यूटेशन संबंध इंगित करता है कि मेजराना फर्मियन संचालक्स एक क्लिफोर्ड बीजगणित उत्पन्न करते हैं, जिसे कई-बॉडी हिल्बर्ट समष्टि में पाउली संचालकों के रूप में व्यवस्थित रूप से दर्शाया जा सकता है।
क्वांटम फ़ील्ड संचालक
परिभाषित एकल-कण अवस्था के लिए एक सामान्य विलोपन (सृजन) संचालक के रूप में वह या तो फर्मिओनिक हो सकता है या बोसोनिक संचालकों की स्थिति और गति स्थान मात्रा फ़ील्ड संचालक (भौतिकी) को परिभाषित करता है और द्वारा
ये गुणांकों के साथ दूसरे परिमाणीकरण संचालक हैं और यह सामान्य प्रथम परिमाणीकरण; प्रथम-परिमाणीकरण तरंग फंक्शन हैं। इस प्रकार, उदाहरण के लिए, कोई भी अपेक्षा मान सामान्य प्रथम-परिमाणीकरण तरंग फलन होगा। शिथिल बोल, किसी भी आधार अवस्था के माध्यम से स्थिति r पर सिस्टम में एक कण जोड़ने के सभी संभावित तरीकों का योग है , जरूरी नहीं कि समतल तरंगें हों, जैसा कि नीचे दिया गया है।
तब से और अंतरिक्ष में प्रत्येक बिंदु पर परिभाषित दूसरे परिमाणीकरण संचालकों को क्वांटम क्षेत्र संचालक कहा जाता है। वे निम्नलिखित मौलिक कम्यूटेटर और एंटी-कम्यूटेटर संबंधों का पालन करते हैं,
- बोसोन क्षेत्र,
- फर्मियन क्षेत्र.
सजातीय प्रणालियों के लिए वास्तविक स्थान और गति अभ्यावेदन के बीच परिवर्तन करना प्रायः वांछनीय होता है, इसलिए, फूरियर में क्वांटम फ़ील्ड संचालक पैदावार को रूपांतरित करते हैं:
नामकरण पर टिप्पणी
जॉर्डन द्वारा प्रस्तुत ''द्वितीय क्वान्टीकरण'' शब्द,[11] यह एक मिथ्या नाम है जो ऐतिहासिक कारणों से कायम है। क्वांटम क्षेत्र सिद्धांत के मूल में, यह अनुचित रूप से सोचा गया था कि डिराक समीकरण एक प्राचीन स्पिनर क्षेत्र के बजाय एक सापेक्षतावादी तरंग फलन (इसलिए अप्रचलित डिराक समुद्र व्याख्या) का वर्णन करता है, जिसे जब परिमाणित किया जाता है (स्केलर क्षेत्र की तरह), तो एक फर्मियोनिक क्वांटम उत्पन्न होता है फ़ील्ड (बनाम बोसोनिक क्वांटम फ़ील्ड)।
एक ''फिर से'' मात्रा निर्धारित नहीं कर रहा है, जैसा कि ''द्वितीय'' शब्द सुझा सकता है; जिस क्षेत्र को परिमाणित किया जा रहा है वह श्रोडिंगर समीकरण नहीं है | श्रोडिंगर तरंग फलन जो एक कण को परिमाणित करने के परिणामस्वरूप उत्पन्न हुआ था, लेकिन एक प्राचीन क्षेत्र है (जैसे कि विद्युत चुम्बकीय क्षेत्र या डिराक स्पिनर क्षेत्र), मूल रूप से युग्मित दोलक का एक संयोजन है, जिसे पहले परिमाणित नहीं किया गया था। इस असेंबली में प्रत्येक दोलक को केवल परिमाणित किया जा रहा है, जो सिस्टम के अर्धशास्त्रीय भौतिकी उपचार से पूरी तरह से क्वांटम-मैकेनिकल में स्थानांतरित हो रहा है।
यह भी देखें
- विहित परिमाणीकरण
- पहला परिमाणीकरण
- ज्यामितीय परिमाणीकरण
- परिमाणीकरण (भौतिकी)
- श्रोडिंगर कार्यात्मक
- अदिश क्षेत्र सिद्धांत
संदर्भ
- ↑ Dirac, Paul Adrien Maurice (1927). "The quantum theory of the emission and absorption of radiation". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 114 (767): 243–265. Bibcode:1927RSPSA.114..243D. doi:10.1098/rspa.1927.0039.
- ↑ Jordan, Pascual; Wigner, Eugene (1928). "Über das Paulische Äquivalenzverbot". Zeitschrift für Physik (in Deutsch). 47 (9): 631–651. Bibcode:1928ZPhy...47..631J. doi:10.1007/bf01331938. S2CID 126400679.
- ↑ Fock, Vladimir Aleksandrovich (1932). "Konfigurationsraum und zweite Quantelung". Zeitschrift für Physik (in Deutsch). 75 (9–10): 622–647. Bibcode:1932ZPhy...75..622F. doi:10.1007/bf01344458. S2CID 186238995.
- ↑ Reed, Michael; Simon, Barry (1975). Methods of Modern Mathematical Physics. Volume II: Fourier Analysis, Self-Adjointness. San Diego: Academic Press. p. 328. ISBN 9780080925370.
- ↑ Becchi, Carlo Maria (2010). "Second quantization". Scholarpedia. 5 (6): 7902. Bibcode:2010SchpJ...5.7902B. doi:10.4249/scholarpedia.7902.
- ↑ Koch, Erik (2013). "Many-electron states". In Pavarini, Eva; Koch, Erik; Schollwöck, Ulrich (eds.). Emergent Phenomena in Correlated Matter. Modeling and Simulation. Vol. 3. Jülich: Verlag des Forschungszentrum Jülich. pp. 2.1–2.26. hdl:2128/5389. ISBN 978-3-89336-884-6.
- ↑ Mahan, Gerald D. (2000). Many-Particle Physics. Physics of Solids and Liquids (3rd ed.). New York: Springer. doi:10.1007/978-1-4757-5714-9. ISBN 978-1-4757-5714-9.
- ↑ Pearsall, Thomas P. (2020). Quantum Photonics. Graduate Texts in Physics (2nd ed.). Cham, Switzerland: Springer. pp. 301–302. Bibcode:2020quph.book.....P. doi:10.1007/978-3-030-47325-9. ISBN 978-3-030-47325-9.
- ↑ Book "Nuclear Models" of Greiner and Maruhn p53 equation 3.47 : http://xn--webducation-dbb.com/wp-content/uploads/2019/02/Walter-Greiner-Joachim-A.-Maruhn-D.A.-Bromley-Nuclear-Models-Springer-Verlag-1996.pdf
- ↑ Levin, M.; Wen, X. G. (2003). "जाली स्पिन मॉडल में फर्मियन, स्ट्रिंग और गेज फ़ील्ड". Physical Review B. 67 (24): 245316. arXiv:cond-mat/0302460. Bibcode:2003PhRvB..67x5316L. doi:10.1103/PhysRevB.67.245316. S2CID 29180411.
- ↑ Todorov, Ivan (2012). "Quantization is a mystery". Bulgarian Journal of Physics. 39 (2): 107–149. arXiv:1206.3116.