नियम 30

From Vigyanwiki
Revision as of 08:53, 11 August 2023 by alpha>DIPAKKK
नियम 30 के समान दिखने वाला कॉनस कपड़ा खोल।[1]

नियम 30 1983 में स्टीफन वोल्फ्राम द्वारा प्रस्तुत प्राथमिक सेलुलर ऑटोमेटन है।[2] सेवोल्फ्राम की वर्गीकरण योजना का उपयोग करते हुए, नियम 30 एक तृतीय श्रेणी का नियम है,जो एपेरियोडिक, कैओस सिद्धांत व्यवहार को प्रदर्शित करता है।

यह नियम विशेष रुचि का है क्योंकि यह सरल, अच्छी तरह से परिभाषित नियमों से जटिल, प्रतीत होने वाले यादृच्छिक पैटर्न उत्पन्न करता है। इस वजह से, वोल्फ्राम का मानना ​​है कि नियम 30, और सामान्य रूप से सेलुलर ऑटोमेटा, यह समझने की कुंजी है कि कैसे सरल नियम प्रकृति में जटिल संरचनाओं और व्यवहार का निर्माण करते हैं। उदाहरण के लिए, व्यापक शंकु घोंघा प्रजाति कॉनस टेक्सटाइल के खोल पर नियम 30 जैसा पैटर्न दिखाई देता है। नियम 30 का उपयोग गणित में यादृच्छिक संख्या जनरेटर के रूप में भी किया गया है,[3] और इसे क्रिप्टोग्राफी में उपयोग के लिए संभावित धारा सिफर के रूप में भी प्रस्तावित किया गया है।[4][5]

नियम 30 का नाम इसलिए रखा गया है क्योंकि 30 सबसे छोटा वोल्फ्राम कोड है जो इसके नियम सेट का वर्णन करता है (जैसा कि नीचे वर्णित है)। नियम 30 की दर्पण छवि, पूरक और दर्पण पूरक में क्रमशः वोल्फ्राम कोड 86, 135 और 149 हैं।

नियम सेट

वुल्फ्राम के सभी प्राथमिक सेलुलर ऑटोमेटा में, केवल दो राज्यों के साथ सेलुलर ऑटोमेटन कोशिकाओं की अनंत एक-आयामी सरणी पर विचार किया जाता है, प्रत्येक कोशिका कुछ प्रारंभिक अवस्था में होती है। अलग-अलग समय अंतराल पर, प्रत्येक कोशिका अपनी वर्तमान स्थिति और अपने दो पड़ोसियों की स्थिति के आधार पर स्वचालित रूप से स्थिति बदलती है। नियम 30 के लिए, नियम सेट जो ऑटोमेटन की अगली स्थिति को नियंत्रित करता है:

वर्तमान पैटर्न 111 110 101 100 011 010 001 000
केंद्र कक्ष के लिए नई स्थिति 0 0 0 1 1 1 1 0

संबंधित सूत्र [लेफ्ट_सेल XOR (सेंट्रल_सेल या राइट_सेल)] है। इसे नियम 30 कहा जाता है क्योंकि बाइनरी संख्या में, 000111102= 30.

निम्नलिखित आरेख बनाए गए पैटर्न को दिखाता है, जिसमें कोशिकाओं को उनके पड़ोस की पिछली स्थिति के आधार पर रंगा गया है। गहरे रंग 1 का प्रतिनिधित्व करते हैं और हल्के रंग 0 का प्रतिनिधित्व करते हैं। ऊर्ध्वाधर अक्ष से नीचे की ओर समय बढ़ता है।

Cellular Automata running Wolfram-rule-30.svg

संरचना और गुण

निम्नलिखित पैटर्न प्रारंभिक अवस्था से उभरता है जिसमें अवस्था 1 (काले रूप में दिखाया गया) वाली कोशिका अवस्था 0 (सफ़ेद) वाली कोशिकाओं से घिरी होती है।

frameकम
नियम 30 सेलुलर ऑटोमेटन

यहां, ऊर्ध्वाधर अक्ष समय का प्रतिनिधित्व करता है और छवि का कोई भी क्षैतिज क्रॉस-सेक्शन पैटर्न के विकास में विशिष्ट बिंदु पर सरणी में सभी कोशिकाओं की स्थिति का प्रतिनिधित्व करता है। इस संरचना में कई रूपांकन मौजूद हैं, जैसे कि सफेद त्रिकोणों की लगातार उपस्थिति और बाईं ओर अच्छी तरह से परिभाषित धारीदार पैटर्न; हालाँकि समग्र रूप से संरचना में कोई स्पष्ट पैटर्न नहीं है। पीढ़ी में काली कोशिकाओं की संख्या अनुक्रम द्वारा दिया गया है

1, 3, 3, 6, 4, 9, 5, 12, 7, 12, 11, 14, 12, 19, 13, 22, 15, 19, ... (sequence A070952 in the OEIS)

और लगभग है .

अराजकता

नियम 30 रॉबर्ट एल. डेवेनी और नुडसन द्वारा प्रस्तावित अराजकता की कठोर परिभाषाओं को पूरा करता है। विशेष रूप से, देवेनी के मानदंड के अनुसार, नियम 30 तितली प्रभाव प्रदर्शित करता है (दो प्रारंभिक विन्यास जो केवल थोड़ी संख्या में कोशिकाओं में तेजी से भिन्न होते हैं), इसके आवधिक विन्यास सभी विन्यासों के स्थान में घने होते हैं, अंतरिक्ष पर कैंटर स्थान के अनुसार विन्यासों का (कोशिकाओं के किसी भी परिमित पैटर्न के साथ आवधिक विन्यास होता है), और यह मिश्रण (गणित) है (कोशिकाओं के किसी भी दो परिमित पैटर्न के लिए, विन्यास होता है जिसमें पैटर्न होता है जो अंततः दूसरे पैटर्न वाले विन्यास की ओर ले जाता है) . नुडसन के मानदंड के अनुसार, यह संवेदनशील निर्भरता प्रदर्शित करता है और इसमें सघन कक्षा होती है (एक प्रारंभिक विन्यास जो अंततः कोशिकाओं के किसी भी सीमित पैटर्न को प्रदर्शित करता है)। नियम के अराजक व्यवहार के ये दोनों लक्षण नियम 30 की सरल और आसानी से सत्यापित संपत्ति से अनुसरण करते हैं: इसे क्रमपरिवर्तनशील छोड़ दिया गया है, जिसका अर्थ है कि यदि दो कॉन्फ़िगरेशन C और D स्थिति में एकल कोशिका की स्थिति में भिन्नता होती है i, तो चरण के बाद सेल में नए कॉन्फ़िगरेशन भिन्न होंगे i + 1.[6]


अनुप्रयोग

यादृच्छिक संख्या पीढ़ी

जैसा कि ऊपर की छवि से स्पष्ट है, नियम 30 ऐसी किसी भी चीज़ की कमी के बावजूद प्रतीत होने वाली यादृच्छिकता उत्पन्न करता है जिसे उचित रूप से यादृच्छिक इनपुट माना जा सकता है। स्टीफन वोल्फ्राम ने इसके केंद्र स्तंभ को छद्म यादृच्छिक संख्या जनरेटर (पीआरएनजी) के रूप में उपयोग करने का प्रस्ताव दिया; यह यादृच्छिकता के लिए कई मानक परीक्षण पास करता है, और वोल्फ्राम ने पहले यादृच्छिक पूर्णांक बनाने के लिए मैथमेटिका उत्पाद में इस नियम का उपयोग किया था।[7] सिपर और टॉमासिनी ने दिखाया है कि यादृच्छिक संख्या जनरेटर के रूप में नियम 30 अन्य सेलुलर ऑटोमेटन-आधारित जनरेटर की तुलना में सभी नियम स्तंभों पर लागू होने पर ची स्क्वेयर परीक्षण पर खराब व्यवहार प्रदर्शित करता है।[8] लेखकों ने यह भी चिंता व्यक्त की कि नियम 30 सीए द्वारा प्राप्त अपेक्षाकृत कम परिणाम इस तथ्य के कारण हो सकते हैं कि हमने वोल्फ्राम द्वारा विचार किए गए एकल के बजाय समानांतर में उत्पन्न एन यादृच्छिक अनुक्रमों पर विचार किया।[9]


सजावट

कैम्ब्रिज नॉर्थ रेलवे स्टेशन आवरण का विवरण

कैम्ब्रिज उत्तर रेलवे स्टेशन को वास्तुशिल्प पैनलों से सजाया गया है जो नियम 30 (या समकक्ष काले-सफेद उलट, नियम 135 के तहत) के विकास को प्रदर्शित करता है।[10] डिज़ाइन को इसके वास्तुकार द्वारा कॉनवे के गेम ऑफ लाइफ से प्रेरित बताया गया था, जो कैम्ब्रिज के गणितज्ञ जॉन हॉर्टन कॉनवे द्वारा अध्ययन किया गया अलग सेलुलर ऑटोमेटन है, लेकिन वास्तव में यह जीवन पर आधारित नहीं है।[11][12]


प्रोग्रामिंग

यदि सेल मान (या अधिक) कंप्यूटर शब्दों के भीतर बिट्स द्वारा दर्शाए जाते हैं, तो स्थिति अद्यतन बिटवाइज़ ऑपरेशन द्वारा जल्दी से किया जा सकता है। यहाँ C++ में दिखाया गया है: <सिंटैक्सहाइलाइट लैंग= सी++ >

  1. शामिल करें <stdint.h>
  2. शामिल करें <iostream>

मुख्य प्रवेश बिंदु() }

</सिंटैक्सहाइलाइट>

#include <stdint.h>
#include <iostream>

int main() {
  uint64_t state = 1u << 31;
  for (int i = 0; i < 32; ++i) {
    for (int j = 64; j--;) {
      std::cout << char(state >> j & 1 ? 'O' : '.');
    }
    std::cout << '\n';
    state = (state >> 1) ^ (state | state << 1);
  }
}

यह प्रोग्राम निम्नलिखित आउटपुट उत्पन्न करता है:

................................O...............................
...............................OOO..............................
..............................OO..O.............................
.............................OO.OOOO............................
............................OO..O...O...........................
...........................OO.OOOO.OOO..........................
..........................OO..O....O..O.........................
.........................OO.OOOO..OOOOOO........................
........................OO..O...OOO.....O.......................
.......................OO.OOOO.OO..O...OOO......................
......................OO..O....O.OOOO.OO..O.....................
.....................OO.OOOO..OO.O....O.OOOO....................
....................OO..O...OOO..OO..OO.O...O...................
...................OO.OOOO.OO..OOO.OOO..OO.OOO..................
..................OO..O....O.OOO...O..OOO..O..O.................
.................OO.OOOO..OO.O..O.OOOOO..OOOOOOO................
................OO..O...OOO..OOOO.O....OOO......O...............
...............OO.OOOO.OO..OOO....OO..OO..O....OOO..............
..............OO..O....O.OOO..O..OO.OOO.OOOO..OO..O.............
.............OO.OOOO..OO.O..OOOOOO..O...O...OOO.OOOO............
............OO..O...OOO..OOOO.....OOOO.OOO.OO...O...O...........
...........OO.OOOO.OO..OOO...O...OO....O...O.O.OOO.OOO..........
..........OO..O....O.OOO..O.OOO.OO.O..OOO.OO.O.O...O..O.........
.........OO.OOOO..OO.O..OOO.O...O..OOOO...O..O.OO.OOOOOO........
........OO..O...OOO..OOOO...OO.OOOOO...O.OOOOO.O..O.....O.......
.......OO.OOOO.OO..OOO...O.OO..O....O.OO.O.....OOOOO...OOO......
......OO..O....O.OOO..O.OO.O.OOOO..OO.O..OO...OO....O.OO..O.....
.....OO.OOOO..OO.O..OOO.O..O.O...OOO..OOOO.O.OO.O..OO.O.OOOO....
....OO..O...OOO..OOOO...OOOO.OO.OO..OOO....O.O..OOOO..O.O...O...
...OO.OOOO.OO..OOO...O.OO....O..O.OOO..O..OO.OOOO...OOO.OO.OOO..
..OO..O....O.OOO..O.OO.O.O..OOOOO.O..OOOOOO..O...O.OO...O..O..O.
.OO.OOOO..OO.O..OOO.O..O.OOOO.....OOOO.....OOOO.OO.O.O.OOOOOOOOO

<पूर्व>

..................................हे................. .............. ……………………ओह…………. ............ ..................................ऊँ..ऊँ.................. .............. ..................................ऊँ.ऊँ.................. ........... ............................ऊँ..ऊँ...ऊँ............ .............. ..................................ऊँ.ऊँ.ऊँ.................. ........ ..................................ऊँ..ऊँ....ऊँ..ऊँ............ .............. ..................................ऊँ.ऊँ..ऊँ................... ...... ..................ऊँ..ऊँ...ऊँ...ऊँ............ ........... .......................ऊँ.ऊँ.ऊँ..ऊँ...ऊँ............... ....... ..................ऊँ..ऊँ....ऊँ.ऊँ.ऊँ..ऊँ............ ......... ..................ऊँ.ऊँ..ऊँ.ऊँ....ऊँ.ऊँ............ ...... ..................ऊँ..ऊँ...ऊँ..ऊँ..ऊँ.ऊँ...ऊँ.......... ......... ..................ऊँ.ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ.................. .. ..................ऊँ..ऊँ....ऊँ.ऊँ...ऊँ..ऊँ..ऊँ..ऊँ........ ......... ..................ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.................. ..................ऊँ..ऊँ...ऊँ..ऊँ.ऊँ....ऊँ......ऊँ......... ...... ...............ऊँ.ऊँ.ऊँ..ऊँ....ऊँ..ऊँ..ऊँ....ऊँ........... ... ..........ऊँ..ऊँ....ऊँ.ऊँ..ऊँ..ऊँ.ऊँ.ऊँ..ऊँ..ऊँ.......... .... ..........ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ..ऊँ...ऊँ...ऊँ.ऊँ.......... ............ऊँ..ऊँ...ऊँ..ऊँ...ऊँ..ऊँ.ऊँ...ऊँ...ऊँ......... .. ..........ऊँ.ऊँ.ऊँ..ऊँ...ऊँ...ऊँ....ऊँ...ऊँ.ऊँ.ऊँ.ऊँ.......... ..........ऊँ..ऊँ....ऊँ.ऊँ..ऊँ.ऊँ.ऊँ.ऊँ..ऊँ..ऊँ....ऊँ..ऊँ....... .. ..........ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ...ऊँ..ऊँ...ऊँ..ऊँ.ऊँ.ऊँ....... ........ऊँ..ऊँ...ऊँ..ऊँ...ऊँ.ऊँ...ऊँ.ऊँ.ऊँ..ऊँ...ऊँ....... .......ऊँ.ऊँ.ऊँ..ऊँ...ऊँ.ऊँ..ऊँ....ऊँ.ऊँ.ऊँ...ऊँ...ऊँ...... ......ऊँ..ऊँ....ऊँ.ऊँ..ऊँ.ऊँ.ऊँ.ऊँ..ऊँ.ऊँ..ऊँ...ऊँ...ऊँ.ऊँ..ऊँ.. ... ..ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ...ऊँ..ऊँ.ऊँ.ऊँ.ऊँ..ऊँ.ऊँ.ऊँ... ....ऊँ..ऊँ...ऊँ..ऊँ...ऊँ..ऊँ..ऊँ..ऊँ..ऊँ..ऊँ..ऊँ.ऊँ...ऊँ... ...ऊँ.ऊँ.ऊँ..ऊँ...ऊँ.ऊँ....ऊँ..ऊँ.ऊँ..ऊँ..ऊँ.ऊँ...ऊँ.ऊँ.ऊँ.. ..ऊँ..ऊँ....ऊँ.ऊँ..ऊँ.ऊँ.ऊँ..ऊँ..ऊँ..ऊँ..ऊँ...ऊँ.ऊँ...ऊँ..ऊँ..ऊँ. .ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ..ऊँ.ऊँ...ऊँ...ऊँ...ऊँ.ऊँ.ऊँ.ऊँ.ऊँ.ऊँ. </पूर्व>

यह भी देखें

संदर्भ

  1. Stephen Coombes (February 2009). "सीपियों की ज्यामिति और रंजकता" (PDF). www.maths.nottingham.ac.uk. University of Nottingham. Retrieved 2013-04-10.
  2. Wolfram, S. (1983). "सेलुलर ऑटोमेटा के सांख्यिकीय यांत्रिकी". Rev. Mod. Phys. 55 (3): 601–644. Bibcode:1983RvMP...55..601W. doi:10.1103/RevModPhys.55.601.
  3. "यादृच्छिक संख्या सृजन". Wolfram Mathematica 8 Documentation. Retrieved 31 December 2011.
  4. Wolfram, S. (1985). "सेलुलर ऑटोमेटा के साथ क्रिप्टोग्राफी". Proceedings of Advances in Cryptology – CRYPTO '85. Lecture Notes in Computer Science 218, Springer-Verlag. p. 429. doi:10.1007/3-540-39799-X_32.
  5. Meier, Willi; Staffelbach, Othmar (1991). "सेलुलर ऑटोमेटा द्वारा उत्पन्न छद्म यादृच्छिक अनुक्रमों का विश्लेषण". Advances in Cryptology – Proc. Workshop on the Theory and Application of Cryptographic Techniques, EUROCRYPT '91. Lecture Notes in Computer Science 547, Springer-Verlag. p. 186. doi:10.1007/3-540-46416-6_17.
  6. Cattaneo, Gianpiero; Finelli, Michele; Margara, Luciano (2000). "Investigating topological chaos by elementary cellular automata dynamics". Theoretical Computer Science. 244 (1–2): 219–241. doi:10.1016/S0304-3975(98)00345-4. MR 1774395.
  7. Lex Fridman (2018-03-02), MIT AGI: Computational Universe (Stephen Wolfram), archived from the original on 2021-12-19, retrieved 2018-03-07
  8. Sipper, Moshe; Tomassini, Marco (1996). "सेलुलर प्रोग्रामिंग द्वारा समानांतर यादृच्छिक संख्या जनरेटर उत्पन्न करना". International Journal of Modern Physics C. 7 (2): 181–190. Bibcode:1996IJMPC...7..181S. doi:10.1142/S012918319600017X.
  9. Page 6 of Sipper, Moshe; Tomassini, Marco (1996). "Generating parallel random number generators by cellular programming". International Journal of Modern Physics C. 7 (2): 181–190. Bibcode:1996IJMPC...7..181S. doi:10.1142/S012918319600017X.
  10. Wolfram, Stephen (June 1, 2017), "Oh My Gosh, It's Covered in Rule 30s!", Stephen Wolfram's blog
  11. Lawson-Perfect, Christian (May 23, 2017), "Right answer for the wrong reason: cellular automaton on the new Cambridge North station", The Aperiodical
  12. Purtill, Corinne. "ब्रिटेन के एक रेलवे स्टेशन पर एक मशहूर गणितज्ञ को दी गई श्रद्धांजलि में उनके गणित को छोड़कर बाकी सब कुछ सही पाया गया". Quartz (in English). Retrieved 2017-06-12.


बाहरी संबंध