अल्फ़ा प्रक्रिया
अल्फा प्रक्रिया, जिसे अल्फा लैडर के रूप में भी जाना जाता है, परमाणु विलयन प्रतिक्रियाओं के दो वर्गों में से एक है जिसके द्वारा तारे हीलियम को भारी रासायनिक तत्व में परिवर्तित करते हैं। इस प्रकार दूसरा वर्ग प्रतिक्रियाओं का एक चक्र है जिसे ट्रिपल-अल्फा प्रक्रिया कहा जाता है, जो केवल हीलियम का उपभोग करता है, और कार्बन का उत्पादन करता है।[1] अल्फा प्रक्रिया समान्यत: बड़े सितारों में और सुपरनोवा के समय होती है।
दोनों प्रक्रियाएं हाइड्रोजन विलयन से पहले होती हैं, जो हीलियम का उत्पादन करती है जो ट्रिपल-अल्फा प्रक्रिया और अल्फा लैडर प्रक्रियाओं दोनों को ईंधन देती है। ट्रिपल अल्फा प्रक्रिया के पश्चात् पर्याप्त कार्बन का उत्पादन होता है, अल्फा-लैडर प्रारंभ होती है और नीचे सूचीबद्ध क्रम में तेजी से भारी तत्वों की विलयन प्रतिक्रियाएं होती हैं। प्रत्येक चरण में केवल पिछली प्रतिक्रिया और हीलियम के उत्पाद का उपयोग होती है। पश्चात् के चरण की प्रतिक्रियाएँ जो किसी विशेष तारे में प्रारंभ होने में सक्षम होती हैं, ऐसा तब होता है जब तारे की बाहरी लेयर में पिछले चरण की प्रतिक्रियाएँ अभी भी चल रही होती हैं।
प्रत्येक प्रतिक्रिया से उत्पन्न ऊर्जा, E, मुख्य रूप से गामा किरणों (γ) के रूप में होती है, जिसमें अतिरिक्त गति के रूप में उपोत्पाद तत्व द्वारा थोड़ी मात्रा ली जाती है।
यह एक आम ग़लतफ़हमी है कि उपरोक्त अनुक्रम (या , जो कि का क्षय उत्पाद है [2], पर समाप्त होता है क्योंकि यह सबसे शक्ति से बंधा हुआ न्यूक्लाइड है - अथार्त , प्रति न्यूक्लियॉन उच्चतम परमाणु बंधन ऊर्जा वाला न्यूक्लाइड है। - और भारी नाभिक का उत्पादन ऊर्जा को छोड़ने (एक्सोथर्मिक) के अतिरिक्त ऊर्जा का उपभोग करेगा (एंडोथर्मिक होगा)। (निकेल-62) वास्तव में बाध्यकारी ऊर्जा के संदर्भ में सबसे शक्ति से बंधा हुआ न्यूक्लाइड है [3] (चूँकि में प्रति न्यूक्लियॉन कम ऊर्जा या द्रव्यमान है)। प्रतिक्रिया वास्तव में ऊष्माक्षेपी है, किंतु फिर भी अनुक्रम प्रभावी रूप से लोहे पर समाप्त होता है। अनुक्रम के उत्पादन से पहले रुक जाता है क्योंकि तारकीय अंदरूनी स्थितियों में लोहे के चारों ओर फोटोडिसइन्ग्रेशन को बढ़ावा देने के लिए फोटोडिसइन्ग्रेशन और अल्फा प्रक्रिया के बीच प्रतिस्पर्धा होती है।[2][3]] इससे की तुलना में अधिक का उत्पादन होता है।इन सभी प्रतिक्रियाओं की तारों के तापमान और घनत्व पर बहुत कम दर होती है और इसलिए ये तारे के कुल उत्पादन में महत्वपूर्ण ऊर्जा का योगदान नहीं करते हैं। बढ़ते कूलम्ब अवरोध के कारण, वे नियॉन (परमाणु क्रमांक N > 10) से भारी तत्वों के साथ और भी कम सरलता से घटित होते हैं।
अल्फा प्रक्रिया तत्व
अल्फा प्रक्रिया तत्व (या अल्फा तत्व) तथाकथित हैं क्योंकि उनके सबसे प्रचुर आइसोटोप चार के पूर्णांक गुणज हैं - हीलियम नाभिक (अल्फा कण) का द्रव्यमान है जो की इन आइसोटोपों को अल्फा न्यूक्लाइड कहा जाता है।
- स्थिर अल्फा तत्व हैं: कार्बन, ऑक्सीजन, नियॉन, मैगनीशियम, सिलिकॉन और सल्फर ।
- आर्गन और कैल्शियम तत्व अवलोकनीय रूप से स्थिर हैं। सिलिकॉन जलने की प्रक्रिया के चरण से पहले उन्हें अल्फा कैप्चर द्वारा संश्लेषित किया जाता है, जो टाइप II सुपरनोवा आगे बढ़ता है
- सिलिकॉन और कैल्शियम पूर्णतया अल्फा प्रोसेस तत्व हैं।
- प्रोटॉन कैप्चर प्रतिक्रियाओं द्वारा मैग्नीशियम का अलग से सेवन किया जा सकता है।
ऑक्सीजन (ऑक्सीजन) की स्थिति पर विवाद है - कुछ लेखक[4] इसे एक अल्फ़ा तत्व मानें, जबकि अन्य ऐसा नहीं मानते है । जो की कम-धात्विक तारकीय जनसंख्या में ऑक्सीजन निश्चित रूप से एक अल्फा तत्व है या जनसंख्या II सितारे: यह टाइप II सुपरनोवा में उत्पन्न होता है, और इसकी वृद्धि अन्य अल्फा प्रक्रिया तत्वों की वृद्धि के साथ अच्छी तरह से संबंधित है।
कभी-कभी कार्बन और नाइट्रोजन को अल्फा प्रक्रिया तत्व माना जाता है, क्योंकि ऑक्सीजन की तरह, उन्हें परमाणु अल्फा-कैप्चर प्रतिक्रियाओं में संश्लेषित किया जाता है, किंतु उनकी स्थिति अस्पष्ट है: तीन तत्वों में से प्रत्येक का उत्पादन (और उपभोग) सीएनओ चक्र द्वारा किया जाता है, जो उन तापमानों की तुलना में बहुत कम तापमान पर आगे बढ़ सकता है जहां अल्फा-लैडर प्रक्रियाएं महत्वपूर्ण मात्रा में अल्फा तत्वों (कार्बन, नाइट्रोजन और ऑक्सीजन सहित) का उत्पादन प्रारंभ करती हैं। तो किसी तारे में केवल कार्बन, नाइट्रोजन, या ऑक्सीजन की उपस्थिति स्पष्ट रूप से यह संकेत नहीं देती है कि अल्फा प्रक्रिया वास्तव में चल रही है - इसलिए कुछ खगोलविदों की अनिच्छा (बिना नियम) इन तीन अल्फा तत्वों को बुलाने में है।
सितारों में उत्पादन
अल्फा प्रक्रिया समान्यत: बड़ी मात्रा में तभी होती है जब तारा पर्याप्त रूप से विशाल हो, ( सूर्य का द्रव्यमान होना);[5] ये तारे उम्र बढ़ने के साथ संकुचित होते हैं, जिससे अल्फा प्रक्रिया को सक्षम करने के लिए कोर तापमान और घनत्व पर्याप्त उच्च स्तर तक बढ़ जाता है। परमाणु द्रव्यमान के साथ आवश्यकताएँ बढ़ती हैं, विशेष रूप से पश्चात् के चरणों में - कभी-कभी इसे सिलिकॉन-जलने की प्रक्रिया के रूप में जाना जाता है - और इस प्रकार यह समान्यत: सुपरनोवा न्यूक्लियोसिंथेसिस में होता है।[6] ला सुपरनोवा टाइप करें मुख्य रूप से ऑक्सीजन और अल्फा-तत्वों (नियॉन, मैग्नीशियम, सिलिकॉन, सल्फर, आर्गन, कैल्शियम और टाइटेनियम) को संश्लेषित करते हैं जबकि टाइप ला सुपरनोवा मुख्य रूप से आयरन पीक (टाइटेनियम, वैनेडियम, क्रोमियम, मैंगनीज, आयरन, कोबाल्ट और निकल) के तत्वों का उत्पादन करते हैं।[5] पर्याप्त रूप से बड़े तारे केवल हाइड्रोजन और हीलियम से आयरन पीक तक के तत्वों को संश्लेषित कर सकते हैं जिनमें मूल रूप से तारा सम्मिलित होता है।[4]
समान्यत: अल्फा प्रक्रिया (या अल्फा-कैप्चर) का पहला चरण तारे के हीलियम-जलने के चरण से होता है, जब हीलियम समाप्त हो जाता है; इस बिंदु पर, का उत्पादन करने के लिए मुफ्त हीलियम कैप्चर करें।[7] कोर के हीलियम जलने के चरण को समाप्त करने के पश्चात् भी यह प्रक्रिया जारी रहती है क्योंकि कोर के चारों ओर का आवरण हीलियम को जलाता रहेगा और कोर में संवहित होता रहेगा।[5] दूसरा चरण (नियॉन बर्निंग) तब प्रारंभ होता है जब एक परमाणु के फोटोडिसइंटीग्रेशन द्वारा हीलियम मुक्त हो जाता है, जिससे दूसरे को अल्फा लैडर पर आगे बढ़ने की अनुमति मिलती है। सिलिकॉन का जलना पश्चात् में इसी तरह से के फोटोडिसइंटीग्रेशन के माध्यम से प्रारंभ किया जाता है; इस बिंदु के पश्चात्, पहले विचार की गई चोटी पर पहुँच जाता है। तारकीय पतन से उत्पन्न सुपरनोवा शॉक तरंग इन प्रक्रियाओं को संक्षेप में घटित होने के लिए आदर्श स्थिति प्रदान करती है।
फोटोडिसइंटीग्रेशन और पुनर्व्यवस्था से जुड़े इस टर्मिनल हीटिंग के समय, परमाणु कणों को सुपरनोवा के समय उनके सबसे स्थिर रूपों में परिवर्तित किया जाता है और इसके पश्चात् में, आंशिक रूप से, अल्फा प्रक्रियाओं के माध्यम से इजेक्शन किया जाता है। और उससे ऊपर से प्रारंभ होकर, सभी उत्पाद तत्व रेडियोधर्मी हैं और इसलिए अधिक स्थिर आइसोटोप में क्षय हो जाएंगे - उदाहरण के लिए। बनता है और में क्षय हो जाता है।[7]
सापेक्ष बहुतायत के लिए विशेष संकेतन
तारों में कुल अल्फा तत्वों की प्रचुरता समान्यत: लघुगणक के रूप में व्यक्त की जाती है, और यह खगोलविद समान्यत: वर्गाकार ब्रैकेट नोटेशन का उपयोग करते हैं:
- जहां प्रति इकाई आयतन में अल्फा तत्वों की संख्या है, और प्रति इकाई आयतन में लौह नाभिकों की संख्या है। यह संख्या की गणना के उद्देश्य से है कि किन तत्वों को "अल्फा तत्व" माना जाना चाहिए, यह विवादास्पद हो जाता है। सैद्धांतिक गैलेक्टिक विकास मॉडल पूर्वानुमान करते हैं कि ब्रह्मांड के आरंभ में आयरन के सापेक्ष अधिक अल्फा तत्व थे।
संदर्भ
- ↑ Narlikar, Jayant V. (1995). काले बादलों से लेकर ब्लैक होल तक. World Scientific. p. 94. ISBN 978-9810220334.
- ↑ 2.0 2.1 Fewell, M.P. (1995-07-01). "उच्चतम माध्य बंधन ऊर्जा वाला परमाणु न्यूक्लाइड". American Journal of Physics. 63 (7): 653–658. Bibcode:1995AmJPh..63..653F. doi:10.1119/1.17828. ISSN 0002-9505.
- ↑ Burbidge, E. Margaret; Burbidge, G.R.; Fowler, William A.; Hoyle, F. (1957-10-01). "तारों में तत्वों का संश्लेषण". Reviews of Modern Physics. 29 (4): 547–650. Bibcode:1957RvMP...29..547B. doi:10.1103/RevModPhys.29.547.
- ↑ 4.0 4.1 Mo, Houjun (2010). आकाशगंगा का निर्माण और विकास. Frank Van den Bosch, S. White. Cambridge: Cambridge University Press. p. 460. ISBN 978-0-521-85793-2. OCLC 460059772.
- ↑ 5.0 5.1 5.2 Truran, J.W.; Heger, A. (2003), "Origin of the Elements", Treatise on Geochemistry (in English), Elsevier, pp. 1–15, doi:10.1016/b0-08-043751-6/01059-8, ISBN 978-0-08-043751-4, retrieved 2023-02-17
- ↑ Truran, J. W.; Cowan, J. J.; Cameron, A. G. W. (1978-06-01). "सुपरनोवा में हीलियम-चालित आर-प्रक्रिया।". The Astrophysical Journal. 222: L63–L67. doi:10.1086/182693. ISSN 0004-637X.
- ↑ 7.0 7.1 Clayton, Donald D. (1983). Principles of stellar evolution and nucleosynthesis : with a new preface. Chicago: University of Chicago Press. pp. 430–435. ISBN 0-226-10953-4. OCLC 9646641.
अग्रिम पठन
- Mendel, J. Trevor; Proctor, Robert N.; Forbes, Duncan A. (21 August 2007) [31 May 2007]. "The age, metallicity and α[[Category: Templates Vigyan Ready]]-element abundance of galactic globular clusters, from single stellar population models". Monthly Notices of the Royal Astronomical Society (published 26 July 2007). 379 (4): 1618–1636. arXiv:0705.4511v2. doi:10.1111/j.1365-2966.2007.12041.x.
{{cite journal}}
: URL–wikilink conflict (help)