व्युत्क्रम लाप्लास परिवर्तन

From Vigyanwiki
Revision as of 12:32, 12 August 2023 by alpha>Manjuu

गणित में, किसी फ़ंक्शन (गणित) F(s) का व्युत्क्रम लाप्लास रूपांतरण टुकड़े-टुकड़े-निरंतर फ़ंक्शन और घातीय-प्रतिबंधित है वास्तविक संख्या फलन f(t) जिसका गुण है:

कहाँ लाप्लास परिवर्तन को दर्शाता है।

यह सिद्ध किया जा सकता है कि, यदि किसी फ़ंक्शन F(s) में व्युत्क्रम लाप्लास ट्रांसफॉर्म f(t) है, तो f(t) विशिष्ट रूप से निर्धारित किया जाता है (उन कार्यों पर विचार करते हुए जो केवल बिंदु सेट पर दूसरे से भिन्न होते हैं, जिसमें लेबेस्ग का माप शून्य होता है) वही)। यह परिणाम पहली बार 1903 में मैथियास लेर्च द्वारा सिद्ध किया गया था और इसे लेर्च के प्रमेय के रूप में जाना जाता है।[1][2] लाप्लास परिवर्तन और व्युत्क्रम लाप्लास परिवर्तन में साथ कई गुण होते हैं जो उन्हें रैखिक गतिशील प्रणालियों के विश्लेषण के लिए उपयोगी बनाते हैं।

मेलिन का व्युत्क्रम सूत्र

व्युत्क्रम लाप्लास परिवर्तन के लिए अभिन्न सूत्र, जिसे मेलिन का व्युत्क्रम सूत्र कहा जाता है, थॉमस जॉन आई'एनसन ब्रोमविच इंटीग्रल, या जोसेफ फूरियर-हजलमार मेलिन इंटीग्रल, लाइन इंटीग्रल द्वारा दिया गया है:

जहां एकीकरण जटिल तल में ऊर्ध्वाधर रेखा Re(s) = γ के साथ किया जाता है, जैसे कि γ F(s) की सभी गणितीय विलक्षणता के वास्तविक भाग से अधिक है और F(s) रेखा पर घिरा हुआ है, उदाहरण के लिए यदि समोच्च पथ अभिसरण के क्षेत्र में है। यदि सभी विलक्षणताएं बाएं आधे तल में हैं, या F(s) संपूर्ण फ़ंक्शन है, तो γ को शून्य पर सेट किया जा सकता है और उपरोक्त व्युत्क्रम अभिन्न सूत्र व्युत्क्रम फूरियर रूपांतरण के समान हो जाता है।

व्यवहार में, कॉची अवशेष प्रमेय का उपयोग करके जटिल अभिन्न अंग की गणना की जा सकती है।

पोस्ट का व्युत्क्रम सूत्र

लाप्लास रूपांतरण के लिए पोस्ट का व्युत्क्रम सूत्र, जिसका नाम एमिल लियोन पोस्ट के नाम पर रखा गया है,[3] व्युत्क्रम लाप्लास परिवर्तन के मूल्यांकन के लिए सरल दिखने वाला लेकिन आमतौर पर अव्यावहारिक सूत्र है।

सूत्र का कथन इस प्रकार है: मान लीजिए f(t) घातीय क्रम के अंतराल [0, ∞) पर सतत कार्य है, अर्थात।

कुछ वास्तविक संख्या के लिए बी. फिर सभी s > b के लिए, f(t) के लिए लाप्लास परिवर्तन मौजूद है और s के संबंध में असीम रूप से भिन्न है। इसके अलावा, यदि F(s) f(t) का लाप्लास रूपांतरण है, तो F(s) का व्युत्क्रम लाप्लास परिवर्तन इस प्रकार दिया जाता है

t > 0 के लिए, जहाँ F(k), s के संबंध में F का k-वां व्युत्पन्न है।

जैसा कि सूत्र से देखा जा सकता है, मनमाने ढंग से उच्च आदेशों के डेरिवेटिव का मूल्यांकन करने की आवश्यकता इस सूत्र को अधिकांश उद्देश्यों के लिए अव्यावहारिक बना देती है।

शक्तिशाली व्यक्तिगत कंप्यूटरों के आगमन के साथ, इस सूत्र का उपयोग करने का मुख्य प्रयास व्युत्क्रम लाप्लास परिवर्तन के अनुमान या स्पर्शोन्मुख विश्लेषण से निपटने से आया है, जिसमें डेरिवेटिव का मूल्यांकन करने के लिए ग्रुनवल्ड-लेटनिकोव डिफ़रिन्टिग्रल का उपयोग किया गया है।

पोस्ट के व्युत्क्रम ने कम्प्यूटेशनल विज्ञान में सुधार और इस तथ्य के कारण रुचि आकर्षित की है कि यह जानना आवश्यक नहीं है कि एफ (एस) का ध्रुव (जटिल विश्लेषण) कहां है, जो व्युत्क्रम का उपयोग करके बड़े एक्स के लिए स्पर्शोन्मुख व्यवहार की गणना करना संभव बनाता है। रीमैन परिकल्पना से संबंधित कई अंकगणितीय कार्यों के लिए मेलिन रूपांतरित होता है।

सॉफ़्टवेयर उपकरण

यह भी देखें

संदर्भ

  1. Cohen, A. M. (2007). "Inversion Formulae and Practical Results". लाप्लास रूपांतरण व्युत्क्रम के लिए संख्यात्मक तरीके. Numerical Methods and Algorithms. Vol. 5. pp. 23–44. doi:10.1007/978-0-387-68855-8_2. ISBN 978-0-387-28261-9.
  2. Lerch, M. (1903). "Sur un point de la théorie des fonctions génératrices d'Abel". Acta Mathematica. 27: 339–351. doi:10.1007/BF02421315.
  3. Post, Emil L. (1930). "सामान्यीकृत भेदभाव". Transactions of the American Mathematical Society. 32 (4): 723–781. doi:10.1090/S0002-9947-1930-1501560-X. ISSN 0002-9947.
  4. Abate, J.; Valkó, P. P. (2004). "बहु-परिशुद्धता लाप्लास परिवर्तन व्युत्क्रम". International Journal for Numerical Methods in Engineering. 60 (5): 979. Bibcode:2004IJNME..60..979A. doi:10.1002/nme.995. S2CID 119889438.


अग्रिम पठन


बाहरी संबंध

This article incorporates material from Mellin's inverse formula on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.