स्टोकेस्टिक सेलुलर ऑटोमेटन

From Vigyanwiki
Revision as of 12:17, 9 August 2023 by alpha>Indicwiki (Created page with "{{Short description|Cellular automaton with probabilistic rules}} {{technical|date=June 2013}} स्टोचैस्टिक सेलुलर ऑटोमेटा य...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

स्टोचैस्टिक सेलुलर ऑटोमेटा या संभाव्य सेलुलर ऑटोमेटा (पीसीए) या यादृच्छिक सेलुलर ऑटोमेटा या स्थानीय रूप से इंटरैक्टिंग मार्कोव श्रृंखला[1][2] सेलुलर ऑटोमेटन का एक महत्वपूर्ण विस्तार हैं। सेलुलर ऑटोमेटा परस्पर क्रिया करने वाली संस्थाओं की एक अलग-समय की गतिशील प्रणाली है, जिसकी स्थिति अलग है।

कुछ सरल सजातीय नियम के अनुसार इकाइयों के संग्रह की स्थिति प्रत्येक अलग-अलग समय पर अद्यतन की जाती है। सभी संस्थाओं की स्थितियाँ समानांतर या समकालिक रूप से अद्यतन की जाती हैं। स्टोकेस्टिक सेल्युलर ऑटोमेटा सीए हैं जिनका अद्यतन नियम स्टोकेस्टिक है, जिसका अर्थ है कि नई संस्थाओं के राज्यों को कुछ संभाव्यता वितरण के अनुसार चुना जाता है। यह एक असतत-समय यादृच्छिक गतिशील प्रणाली है। संस्थाओं के बीच स्थानिक अंतःक्रिया से, अद्यतन नियमों की सरलता के बावजूद, स्व-संगठन जैसी जटिल प्रणाली उभर सकती है। गणितीय वस्तु के रूप में, इसे स्टोकेस्टिक प्रक्रियाओं के ढांचे में अलग-अलग समय में एक अंतःक्रियात्मक कण प्रणाली के रूप में माना जा सकता है। देखना [3] अधिक विस्तृत परिचय के लिए.

मार्कोव स्टोकेस्टिक प्रक्रियाओं के रूप में पीसीए

असतत-समय मार्कोव प्रक्रिया के रूप में, पीसीए को उत्पाद स्थान पर परिभाषित किया जाता है (कार्टेशियन उत्पाद) कहाँ एक परिमित या अनंत ग्राफ़ है, जैसे और कहाँ उदाहरण के लिए, एक सीमित स्थान है या . संक्रमण संभाव्यता का एक उत्पाद रूप होता है कहाँ और पर एक संभाव्यता वितरण है . सामान्यतः कुछ स्थानीयता की आवश्यकता होती है कहाँ साथ के का एक सीमित पड़ोस। देखना [4] संभाव्यता सिद्धांत के दृष्टिकोण के बाद अधिक विस्तृत परिचय के लिए।

स्टोकेस्टिक सेलुलर ऑटोमेटन के उदाहरण

अधिकांश सेलुलर ऑटोमेटन

संभाव्य अद्यतन नियमों के साथ बहुसंख्यक समस्या (सेलुलर ऑटोमेटन) का एक संस्करण है। टूम का नियम देखें.

जाली यादृच्छिक क्षेत्रों से संबंध

पीसीए का उपयोग सांख्यिकीय यांत्रिकी में लौहचुंबकत्व के आइसिंग मॉडल का अनुकरण करने के लिए किया जा सकता है।[5] मॉडलों की कुछ श्रेणियों का अध्ययन सांख्यिकीय यांत्रिकी के दृष्टिकोण से किया गया।

सेलुलर पॉट्स मॉडल

एक मजबूत संबंध है[6] संभाव्य सेलुलर ऑटोमेटा और सेलुलर पॉट्स मॉडल के बीच विशेष रूप से जब इसे समानांतर में लागू किया जाता है।

गैर मार्कोवियन सामान्यीकरण

गैल्वेस-लोचेरबैक मॉडल एक गैर मार्कोवियन पहलू के साथ सामान्यीकृत पीसीए का एक उदाहरण है।

संदर्भ

  1. Toom, A. L. (1978), Locally Interacting Systems and their Application in Biology: Proceedings of the School-Seminar on Markov Interaction Processes in Biology, held in Pushchino, March 1976, Lecture Notes in Mathematics, vol. 653, Springer-Verlag, Berlin-New York, ISBN 978-3-540-08450-1, MR 0479791
  2. R. L. Dobrushin; V. I. Kri︠u︡kov; A. L. Toom (1978). Stochastic Cellular Systems: Ergodicity, Memory, Morphogenesis. ISBN 9780719022067.
  3. Fernandez, R.; Louis, P.-Y.; Nardi, F. R. (2018). "Chapter 1: Overview: PCA Models and Issues". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_1. ISBN 9783319655581. S2CID 64938352.
  4. P.-Y. Louis PhD
  5. Vichniac, G. (1984), "Simulating physics with cellular automata", Physica D, 10 (1–2): 96–115, Bibcode:1984PhyD...10...96V, doi:10.1016/0167-2789(84)90253-7.
  6. Boas, Sonja E. M.; Jiang, Yi; Merks, Roeland M. H.; Prokopiou, Sotiris A.; Rens, Elisabeth G. (2018). "Chapter 18: Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis". In Louis, P.-Y.; Nardi, F. R. (eds.). Probabilistic Cellular Automata. Springer. doi:10.1007/978-3-319-65558-1_18. hdl:1887/69811. ISBN 9783319655581.


अग्रिम पठन