ऑसिलोस्कोप का इतिहास

From Vigyanwiki
Revision as of 11:44, 21 August 2023 by Manidh (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
हाथ से प्लॉटिंग तरंगरूप माप की जौबर्ट की स्टेप-बाई-स्टेप विधि का चित्रण[1]

ऑसिलोस्कोप का इतिहास विज्ञान के लिए मौलिक था क्योंकि ऑसिलोस्कोप आवृत्ति और अन्य तरंग विशेषताओं को मापने के लिए विद्युत वोल्टेज या वर्तमान के रूप में तरंग दोलनों को देखने के लिए उपकरण है। विद्युत चुम्बकीय सिद्धांत विकसित करने में यह महत्वपूर्ण था। तरंगरूपों की पहली रिकॉर्डिंग 19वीं सदी के दूसरे दशक की यांत्रिक ड्राइंग प्रणाली से जुड़े गैल्वेनोमीटर के साथ की गई थी। आधुनिक डिजिटल ऑसिलोस्कोप ऑसिलोग्राफ़, कैथोड रे ट्यूब, एनालॉग ऑसिलोस्कोप और डिजिटल इलेक्ट्रॉनिक्स के विकास की अनेक पीढ़ियों का परिणाम है।

हैण्ड ड्रा ऑसिलोग्राम

तरंगरूप की छवि बनाने की सबसे प्रारंभिक विधि रोटर की धुरी के चारों ओर विशिष्ट बिंदुओं पर घूमते रोटर के वोल्टेज या वर्तमान को मापने और गैल्वेनोमीटर के साथ लिए गए मापों को नोट करने की पेनस्टैकिंग और पेनस्टैकिंग प्रक्रिया के माध्यम से थी। रोटर के चारों ओर क्रमशः आगे बढ़ते हुए, प्रत्येक स्थिति में रोटेशन की डिग्री और मीटर के बल को रिकॉर्ड करके ग्राफ़िंग पेपर पर सामान्य लंबवत तरंग खींची जा सकती है।

इस प्रक्रिया को पहले आंशिक रूप से स्वचालित किया गया था जूल्स फ्रांकोइस जौबर्ट [fr] तरंग रूप माप की अपनी स्टेप-बाई-स्टेप विधि के साथ इसमें घूमने वाले रोटर के शाफ्ट से जुड़ा विशेष एकल-संपर्क कम्यूटेटर (इलेक्ट्रिक) सम्मिलित था। तथा संपर्क बिंदु को स्पष्ट डिग्री संकेतक मापदंड के पश्चात् रोटर के चारों ओर ले जाया जा सकता है और तकनीशियन द्वारा गैल्वेनोमीटर पर दिखाई देने वाले आउटपुट को हाथ से ग्राफ़ किया जा सकता है।[2] यह प्रक्रिया केवल बहुत ही कठिन तरंगरूप सन्निकटन उत्पन्न कर सकती है क्योंकि इसका निर्माण अनेक हज़ार तरंग चक्रों की अवधि में हुआ था, किन्तु यह तरंगरूप इमेजिंग के विज्ञान में पहला कदम था।

स्वचालित पेपर-ड्रा ऑसिलोग्राफ

हॉस्पिटैलियर ओन्डोग्राफ का योजनाबद्ध और परिप्रेक्ष्य दृश्य, जिसमें एक सिंक्रोनस मोटर ड्राइव तंत्र और एक स्थायी का उपयोग करके, समय के साथ निर्मित तरंग रूप छवि को रिकॉर्ड करने के लिए एक पेपर ड्रम पर एक पेन का उपयोग किया गया चुंबक गैल्वेनोमीटर[3][4]

पहले स्वचालित ऑसिलोग्राफ में स्क्रॉल या पेपर के ड्रम पर पेन को घुमाने के लिए गैल्वेनोमीटर का उपयोग किया जाता था, जो निरंतर चलती स्क्रॉल पर तरंग पैटर्न को कैप्चर करता था। यांत्रिक घटकों की धीमी प्रतिक्रिया समय की तुलना में तरंगरूपों की अपेक्षाकृत उच्च-आवृत्ति गति के कारण, तरंगरूप छवि सीधे नहीं खींची गई थी, किन्तु अनेक भिन्न-भिन्न तरंगरूपों के छोटे टुकड़ों को मिलाकर समय की अवधि में बनाई गई थी, जिससे औसत आकार की छवि बनाई जा सकती है। .

हॉस्पिटैलियर ओन्डोग्राफ के नाम से जाना जाने वाला उपकरण तरंग रूप माप की इस पद्धति पर आधारित था। यह स्वचालित रूप से प्रत्येक 100वीं तरंग से संधारित्र को चार्ज करता है, और संग्रहीत ऊर्जा को रिकॉर्डिंग गैल्वेनोमीटर के माध्यम से डिस्चार्ज करता है, संधारित्र के प्रत्येक क्रमिक चार्ज को तरंग के साथ अल्प दूर बिंदु से लिया जाता है।[5] (ऐसे तरंग-रूप माप अभी भी अनेक सैकड़ों तरंग चक्रों में औसत थे किन्तु हाथ से खींचे गए ऑसिलोग्राम की तुलना में अधिक स्पष्ट थे।)

फोटोग्राफिक ऑसिलोग्राफ

डुडेल दर्पण के साथ मूविंग-कॉइल ऑसिलोग्राफ़ और इसके प्रत्येक तरफ दो सहायक मूविंग कॉइल्स[6]
तरंगरूप पैटर्न के निकट में समय-सूचकांक चिह्न लगाने के लिए घूमने वाला शटर और चलती दर्पण असेंबली[7]
तरंगरूप को रिकॉर्ड करने के लिए मूविंग-फिल्म कैमरा[8]
हाई-वोल्टेज परिपथ के डिस्कनेक्ट होने पर स्विच संपर्कों में स्पार्किंग की फिल्म रिकॉर्डिंग[9]

तरंगों के प्रत्यक्ष माप की अनुमति देने के लिए रिकॉर्डिंग उपकरण के लिए बहुत कम द्रव्यमान वाली माप प्रणाली का उपयोग करना आवश्यक था जो मापी जा रही वास्तविक तरंगों की गति से मेल खाने के लिए पर्याप्त गति से चल सकते है। यह विलियम डडेल द्वारा मूविंग-कॉइल ऑसिलोग्राफ के विकास के साथ किया गया था जिसे आधुनिक समय में दर्पण गैल्वेनोमीटर के रूप में भी जाना जाता है। इसने माप उपकरण को छोटे दर्पण में परिवर्तित कर दिया जो तरंग रूप से मेल खाने के लिए उच्च गति से चल सकता था।

तरंगरूप मापन करने के लिए, फोटोग्राफिक स्लाइड को विंडो के पास छोड़ा जाएगा जहां पर प्रकाश किरण निकलती है, या समय के साथ तरंगरूप को रिकॉर्ड करने के लिए एपर्चर में मोशन पिक्चर फिल्म का निरंतर रोल स्क्रॉल किया जाता है। चूँकि माप निर्मित पेपर रिकॉर्डर की तुलना में बहुत अधिक स्पष्ट थे, फिर भी जांच से पहले प्रदर्शित छवियों को विकसित करने के कारण सुधार का अनुरोध किया था।

दर्पण टिल्टिंग

1920 के दशक में, सींग के शीर्ष पर डायाफ्राम से जुड़ा छोटा टिल्टिंग दर्पण कुछ किलोहर्ट्ज़, संभवतः 10 किलोहर्ट्ज़ तक भी अच्छी प्रतिक्रिया प्रदान करता था। उस समय आधार, अनसिंक्रनाइज़, स्पिनिंग दर्पण बहुभुज द्वारा प्रदान किया गया था, और आर्क लैंप से प्रकाश की एकत्रित किरण ने तरंग को प्रयोगशाला की दीवार या स्क्रीन पर प्रक्षेपित किया था।[10]

इससे पहले भी, लौ पर गैस फ़ीड पर डायाफ्राम पर लगाए गए ऑडियो ने लौ की ऊंचाई को भिन्न-भिन्न कर दिया था, और स्पिनिंग दर्पण बहुभुज ने तरंगों की प्रारंभिक प्रकाश था।[11]

यूवी-संवेदनशील पेपर और उन्नत दर्पण गैल्वेनोमीटर का उपयोग करते हुए मूविंग-पेपर ऑसिलोग्राफ ने 20 वीं शताब्दी के मध्य में मल्टी-चैनल रिकॉर्डिंग प्रदान की थी। आवृति प्रतिक्रिया कम से कम निम्न ऑडियो रेंज में थी।

सीआरटी आविष्कार

ऑसिलोस्कोप में उपयोग के लिए कैथोड-रे ट्यूब का आंतरिक भाग। 1. विक्षेपण वोल्टेज इलेक्ट्रोड; 2. इलेक्ट्रॉन बंदूक; 3. इलेक्ट्रॉन किरण; 4. फोकसिंग कुंडल; 5. स्क्रीन का फ़ॉस्फ़र-लेपित आंतरिक भाग

कैथोड रे ट्यूब (सीआरटी) का विकास 19वीं सदी के अंत में हुआ था। उस समय, ट्यूबों का उद्देश्य मुख्य रूप से इलेक्ट्रॉनों (तब कैथोड किरणों के रूप में जाना जाता था) की भौतिकी का प्रदर्शन और अन्वेषण करना था। कार्ल फर्डिनेंड ब्रौन ने फॉस्फोर-लेपित सीआरटी में विद्युत चार्ज डिफ्लेक्टर प्लेटों पर दोलन संकेत प्रयुक्त करके, 1897 में भौतिकी जिज्ञासा के रूप में सीआरटी ऑसिलोस्कोप का आविष्कार किया था। ब्रौन ट्यूब प्रयोगशाला उपकरण थे, जो कोल्ड-कैथोड एमिटर और बहुत उच्च वोल्टेज (20,000 से 30,000 वोल्ट के क्रम पर) का उपयोग करते थे। और आंतरिक प्लेटों पर केवल ऊर्ध्वाधर विक्षेपण प्रयुक्त होने के साथ, क्षैतिज समय आधार प्रदान करने के लिए ट्यूब का घूर्णन दर्पण के माध्यम से देखा गया था।[12] 1899 में जोनाथन ज़ेनेक ने कैथोड रे ट्यूब को बीम बनाने वाली प्लेटों से सुसज्जित किया और ट्रेस को साफ़ करने के लिए चुंबकीय क्षेत्र का उपयोग किया था।[13]

प्रारंभिक कैथोड किरण ट्यूबों को 1919 की प्रारंभ में ही प्रयोगशाला मापों में प्रयोगात्मक रूप से प्रयुक्त किया गया था [14] किन्तु निर्वात और कैथोड उत्सर्जकों की व्यर्थ स्थिति से पीड़ित था। थर्मिओनिक उत्सर्जन उत्सर्जक के अनुप्रयोग ने ऑपरेटिंग वोल्टेज को कुछ सौ वोल्ट तक ड्राप की अनुमति दी थी। वेस्टर्न इलेक्ट्रिक ने इस प्रकार की वाणिज्यिक ट्यूब प्रस्तुत की थी, जो इलेक्ट्रॉन बीम पर ध्यान केंद्रित करने में सहायता के लिए ट्यूब के अन्दर अल्प मात्रा में गैस पर निर्भर हुआ करती थी।[14]

व्लादिमीर के. ज़्वोरकिन या वी. के. ज़्वोरकिन ने 1931 में थर्मिओनिक एमिटर के साथ स्थायी रूप से सीलबंद, उच्च-वैक्यूम कैथोड रे ट्यूब का वर्णन किया था। इस स्थिर और प्रतिलिपि प्रस्तुत करने योग्य अवयव ने सामान्य रेडियो को ऑसिलोस्कोप बनाने की अनुमति दी जो प्रयोगशाला सेटिंग के बाहर प्रयोग करने योग्य था।[13]

पहला डुअल-बीम ऑसिलोस्कोप 1930 के दशक के अंत में ब्रिटिश कंपनी ए.सी.कोसर (पश्चात् में रेथियॉन द्वारा अधिग्रहित) द्वारा विकसित किया गया था। सीआरटी वास्तविक डबल बीम प्रकार नहीं था, किन्तु ऊर्ध्वाधर विक्षेपण प्लेटों के मध्य तीसरी प्लेट रखकर बनाई गई विभाजित बीम का उपयोग करता था। द्वितीय विश्व युद्ध के समय राडार उपकरणों के विकास और सर्विसिंग के लिए इसका व्यापक रूप से उपयोग किया गया था। चूँकि यह पल्स परिपथ के प्रदर्शन की जांच के लिए अत्यधिक उपयोगी था, किन्तु इसे कैलिब्रेट नहीं किया गया था, इसलिए इसे मापने वाले उपकरण के रूप में उपयोग नहीं किया जा सकता था। चूँकि, यह आईएफ परिपथ के प्रतिक्रिया वक्र बनाने में उपयोगी था और परिणामस्वरूप उनके स्पष्ट संरेखण में बड़ी सहायता थी।

एलन बी. डू मोंट लैब्स या मूविंग-फिल्म कैमरे बनाए गए थे, जिसमें निरंतर फिल्म गति ने समय का आधार प्रदान किया था। क्षैतिज विक्षेपण संभवतः अक्षम कर दिया गया था, चूँकि बहुत धीमी गति से स्वीप करने से फॉस्फोर घिसाव फैल सकता था। P11 फॉस्फोर वाले सीआरटी या तो मानक थे या उपलब्ध थे।[15]

लंबे समय तक बने रहने वाले सीआरटी, कभी-कभी क्रमशः परिवर्तित संकेतों या एकल-शॉट घटनाओं को प्रदर्शित करने के लिए ऑसिलोस्कोप में उपयोग किए जाते हैं, P 7 जैसे फॉस्फोर का उपयोग करते हैं, जिसमें दोहरी लेयर सम्मिलित होती है। आंतरिक लेयर इलेक्ट्रॉन किरण से चमकीला नीला रंग विस्तृत करती है, और इसकी प्रकाश फॉस्फोरसेंट बाहरी लेयर को उत्तेजित करती है, जो सीधे एन्वोलोप (बल्ब) के अंदर दिखाई देती है। उत्तरार्द्ध ने प्रकाश को संग्रहीत किया था, और इसे दस सेकंड में क्षीण चमक के साथ पीले रंग की चमक के साथ जारी किया था। इस प्रकार के फ़ॉस्फ़र का उपयोग रडार एनालॉग पीपीआई सीआरटी डिस्प्ले में भी किया गया था, जो कुछ टीवी मौसम-रिपोर्ट दृश्यों में ग्राफिक वर्गीकरण (घूर्णन रेडियल लाइट बार) हैं।

स्वीप परिपथ

सिंक्रोनाइज़्ड स्वीप के साथ ऑसिलोस्कोप। एचओआर. चयनकर्ता क्षैतिज आवृत्ति रेंज (संधारित्र) सेट करता है; बारंबार. वर्नियर फ्री-रनिंग आवृत्ति को समायोजित करता है; साथ-साथ करना। आयाम तुलनित्र पर लाभ निर्धारित करता है

आस्टसीलस्कप के उस भाग को क्षैतिज स्वीप करने की तकनीक जो क्षैतिज समय अक्ष बनाती है, परिवर्तित हो गई है।

सिंक्रोनाइज़्ड स्वीप

प्रारंभिक ऑसिलोस्कोप ने समय अक्ष प्रदान करने के लिए सिंक्रनाइज़ सॉटूथ तरंग जनरेटर का उपयोग किया था। सॉटूथ संधारित्र को अपेक्षाकृत स्थिर धारा से चार्ज करके बनाया जाता है; इससे बढ़ता हुआ वोल्टेज उत्पन्न होता है। स्वीप बनाने के लिए बढ़ते वोल्टेज को क्षैतिज विक्षेपण प्लेटों में डाला जाता है। बढ़ते वोल्टेज को संतुलक की आपूर्ति की जाएगी; जब संधारित्र निश्चित स्तर पर पहुंच जाता है, जिससे संधारित्र को डिस्चार्ज कर दिया जाता है, ट्रेस बाईं ओर वापस आ जाता है, और संधारित्र (और स्वीप) और ट्रैवर्स प्रारंभ कर देता है। ऑपरेटर चार्जिंग धारा को समायोजित करेगा जिससे सॉटूथ जनरेटर की अवधि ऊर्ध्वाधर अक्ष सिग्नल के गुणक की तुलना में अल्प लंबी होती है। उदाहरण के लिए, 1 किलोहर्ट्ज़ साइनवेव (1 एमएस अवधि) को देखते समय, ऑपरेटर क्षैतिज आवृत्ति को 5 एमएस से अधिक समायोजित कर सकता है। जब इनपुट सिग्नल अनुपस्थित था, जिससे स्वीप उस आवृत्ति पर मुक्त रूप से चलता है।

यदि इनपुट सिग्नल उपस्थित था, तो परिणामी डिस्प्ले क्षैतिज स्वीप की फ्री-रनिंग आवृत्ति पर स्थिर नहीं होती है क्योंकि यह इनपुट (ऊर्ध्वाधर अक्ष) सिग्नल का उपगुणक नहीं था। इसे ठीक करने के लिए, स्वीप जनरेटर के तुलनित्र में इनपुट सिग्नल के स्केल किए गए वर्जन को जोड़कर स्वीप जनरेटर को सिंक्रनाइज़ किया जाता है। जोड़ा गया सिग्नल तुलनित्र को पहले ट्रिप करने का कारण बनेगा और इस प्रकार इसे इनपुट सिग्नल के साथ सिंक्रनाइज़ करता है। ऑपरेटर सिंक स्तर को समायोजित कर सकता है; कुछ डिज़ाइनों के लिए, ऑपरेटर ध्रुवीयता चुन सकता है।[16] स्वीप जनरेटर रिट्रेस के समय बीम को संवर्त कर देगा (जिसे ब्लैंकिंग कहा जाता है)।[17] परिणामी क्षैतिज स्वीप गति अनकैलिब्रेटेड थी क्योंकि स्वीप दर को सॉटूथ जनरेटर की स्लोप को परिवर्तित करके समायोजित किया गया था। डिस्प्ले पर प्रति डिवीजन का समय स्वीप की फ्री-रनिंग आवृत्ति और क्षैतिज लाभ नियंत्रण पर निर्भर करता है।

सिंक्रोनाइज़्ड स्वीप ऑसिलोस्कोप गैर-आवधिक सिग्नल प्रदर्शित नहीं कर सका क्योंकि यह स्वीप जनरेटर को उस सिग्नल के साथ सिंक्रोनाइज़ नहीं कर सकता है। क्षैतिज परिपथ अधिकांशतः एसी-युग्मित होते थे

ट्रिगर स्वीप

टेक्ट्रोनिक्स 465 ऑसिलोस्कोप पर ट्रिगर स्वीप नियंत्रण

द्वितीय विश्व युद्ध के समय, रडार विकास के लिए उपयोग किए जाने वाले कुछ ऑसिलोस्कोप (और कुछ प्रयोगशाला ऑसिलोस्कोप) में तथाकथित संचालित स्वीप थे। यह स्वीप परिपथ निष्क्रिय रहे, सीआरटी बीम कट गया था, जब तक कि बाहरी उपकरण से ड्राइव पल्स ने सीआरटी को रिक्त नहीं किया और स्थिर गति क्षैतिज ट्रेस प्रारंभ नहीं किया था; कैलिब्रेटेड गति ने समय अंतराल की माप की अनुमति दी थी। जब स्वीप पूरा हो गया था, जिससे स्वीप परिपथ ने सीआरटी को रिक्त कर दिया (बीम को संवर्त कर दिया), स्वयम को रीसेट कर दिया था, और अगले ड्राइव पल्स की प्रतीक्षा की थी। 1945 में निर्मित व्यावसायिक रूप से उपलब्ध ऑसिलोस्कोप ड्यूमॉन्ट 248 में यह सुविधा थी।

1946 में ऑसिलोस्कोप अधिक उपयोगी उपकरण बन गया था जब हावर्ड वॉलम और मेल्विन जैक मर्डॉक ने टेक्ट्रोनिक्स मॉडल 511 ट्रिगर-स्वीप ऑसिलोस्कोप प्रस्तुत किया था। हॉवर्ड वॉलम ने सबसे पहले इस तकनीक को जर्मनी में प्रयोग में देखा था। ट्रिगर स्वीप में परिपथ होता है जो इनपुट सिग्नल से संचालित स्वीप के ड्राइव पल्स को विकसित करता है।

ट्रिगरिंग दोहराए जाने वाले तरंगरूप के स्थिर प्रदर्शन की अनुमति देता है, क्योंकि तरंगरूप के अनेक दोहराव फॉस्फर स्क्रीन पर पुर्णतः निशान पर स्ट्रेच किए जाते हैं। ट्रिगर स्वीप स्वीप गति के अंशांकन को बनाए रखता है, जिससे तरंग के गुणों जैसे आवृत्ति, स्टेप, उदय समय और अन्य को मापना संभव हो जाता है, जो अन्यथा संभव नहीं होता है।[18] इसके अतिरिक्त, ट्रिगरिंग भिन्न-भिन्न अंतराल पर हो सकती है, इसलिए कोई आवश्यकता नहीं है कि इनपुट सिग्नल आवधिक हो।

ट्रिगर-स्वीप ऑसिलोस्कोप ऊर्ध्वाधर विक्षेपण सिग्नल (या सिग्नल के परिवर्तन की दर) की तुलना समायोज्य सीमा से करते हैं, जिसे ट्रिगर स्तर कहा जाता है। साथ ही, ट्रिगर परिपथ थ्रेशोल्ड को पार करने पर ऊर्ध्वाधर सिग्नल की स्लोप दिशा को भी पहचानते हैं - क्रॉसिंग पर ऊर्ध्वाधर सिग्नल धनात्मक या ऋणात्मक होता है। इसे ट्रिगर पोलारिटी कहा जाता है। जब ऊर्ध्वाधर सिग्नल निर्धारित ट्रिगर स्तर और वांछित दिशा को पार कर जाता है, तो ट्रिगर परिपथ सीआरटी को रिक्त कर देता है और स्पष्ट रैखिक स्वीप प्रारंभ कर देता है। क्षैतिज स्वीप के पूरा होने के पश्चात्, अगला स्वीप तब होगा जब सिग्नल बार फिर थ्रेशोल्ड ट्रिगर को पार करता है।

ट्रिगर-स्वीप ऑसिलोस्कोप में विविधताओं में लंबे समय तक बने रहने वाले फॉस्फोर का उपयोग करके सीआरटी के साथ प्रस्तुत किए गए मॉडल सम्मिलित हैं, जैसे कि टाइप पी 7 इन ऑसिलोस्कोप का उपयोग उन अनुप्रयोगों के लिए किया गया था जहां क्षैतिज ट्रेस गति बहुत धीमी थी, या निरंतर स्क्रीन छवि प्रदान करने के लिए स्वीप के मध्य लंबी देरी थी। ट्रिगर स्वीप के बिना ऑसिलोस्कोप को 1971 में हैरी गारलैंड और रोजर मेलेन द्वारा विकसित सॉलिड-स्टेट परिपथ का उपयोग करके ट्रिगर स्वीप के साथ रेट्रो-फिट किया जा सकता है।[19]

चूंकि ऑसिलोस्कोप समय के साथ अधिक शक्तिशाली हो गए हैं, उन्नत ट्रिगरिंग विकल्प अधिक सम्मिश्र तरंगों को पकड़ने और प्रदर्शित करने की अनुमति देते हैं। उदाहरण के लिए, ट्रिगर होल्डऑफ़ अधिकांश आधुनिक ऑसिलोस्कोप में सुविधा है जिसका उपयोग ट्रिगर के पश्चात् निश्चित अवधि को परिभाषित करने के लिए किया जा सकता है, जिसके समय ऑसिलोस्कोप फिर से ट्रिगर नहीं होता है। इससे अनेक किनारों वाले तरंगरूप का स्थिर दृश्य स्थापित करना सरल हो जाता है जो अन्यथा और ट्रिगर का कारण बन सकता है।

टेक्ट्रोनिक्स

टाइप 465 टेक्ट्रोनिक्स ऑसिलोस्कोप, 1980 के दशक के समय लोकप्रिय एनालॉग ऑसिलोस्कोप

वॉलम और मर्डॉक ने टेक्ट्रोनिक्स की स्थापना की थी, जो कैलिब्रेटेड ऑसिलोस्कोप का पहला निर्माता था (जिसमें स्क्रीन पर ऑसिलोस्कोप ग्रैटिक्यूल सम्मिलित था और स्क्रीन के कार्टेशियन समन्वय प्रणाली पर कैलिब्रेटेड स्केल के साथ प्लॉट तैयार किए गए थे)। टेक्ट्रोनिक्स के पश्चात् के विकासों में टाइम- बहुसंकेतन (चॉपिंग या ट्रेस अल्टरनेशन के माध्यम से) या ट्यूब में अनेक इलेक्ट्रॉन गन की उपस्थिति द्वारा संकेतों की तुलना करने के लिए मल्टीपल-ट्रेस ऑसिलोस्कोप का विकास सम्मिलित था। 1963 में, टेक्ट्रोनिक्स ने डीवीबीएसटी या डायरेक्ट व्यू बिस्टेबल स्टोरेज ट्यूब (डीवीबीएसटी) की प्रारंभ किया था, जिसने (पहले की तरह) केवल दोहराए जाने वाले तरंग रूपों के स्तिरिक्त एकल पल्स तरंग रूपों को देखने की अनुमति दी थी। सूक्ष्म चैनल प्लेट का उपयोग करते हुए, सीआरटी के अंदर और फेसप्लेट के पीछे विभिन्न प्रकार के माध्यमिक-उत्सर्जन इलेक्ट्रॉन गुणक, सबसे उन्नत एनालॉग ऑसिलोस्कोप (उदाहरण के लिए, टेक 7104 मेनफ्रेम) दृश्यमान ट्रेस प्रदर्शित कर सकते हैं (या फोटोग्राफी की अनुमति दे सकते हैं) अत्यंत तेज स्वीप गति से चलने पर भी सिंगल-शॉट इवेंट होता है। यह ऑसिलोस्कोप 1 गीगाहर्ट्ज़ पर चला गया था।

टेक्ट्रोनिक्स द्वारा बनाए गए वैक्यूम-ट्यूब ऑसिलोस्कोप में, ऊर्ध्वाधर एम्पलीफायर की विलंब रेखा लंबी फ्रेम थी, जो अंतरिक्ष कारणों से L-आकार की थी, जिसमें अनेक दर्जन भिन्न-भिन्न इंडक्टर्स और कम कैपेसिटेंस समायोज्य (ट्रिमर) बेलनाकार कैपेसिटर की समान संख्या होती थी। इन ऑसिलोस्कोप में प्लग-इन वर्टिकल इनपुट चैनल थे। विलंब लाइन कैपेसिटर को समायोजित करने के लिए, उच्च दबाव गैस से भरे पारा-वेट रीड स्विच ने अत्यधिक तेजी से बढ़ने वाली पल्स बनाईं थी जो सीधे ऊर्ध्वाधर एम्पलीफायर के पश्चात् के फेज में चली गईं थी। तेज स्वीप के साथ, किसी भी गलत समायोजन ने डीप या बंप उत्पन्न कर दिया था, और संधारित्र को स्पर्श करने से तरंग के स्थानीय भाग में परिवर्तन हो गया था। संधारित्र को समायोजित करने से उसका बम्प विलुप्त हो गया था। अधिकांशतः, समतल शीर्ष का परिणाम निकला था।

प्रारंभिक वाइडबैंड ऑसिलोस्कोप में वैक्यूम-ट्यूब आउटपुट फेज में रेडियो ट्रांसमिटिंग ट्यूब का उपयोग किया जाता था, किन्तु वह बहुत अधिक बिजली की खपत करते थे। ग्राउंड सीमित बैंडविड्थ के लिए कैपेसिटेंस के पिकोफैराड उत्तम डिज़ाइन, जिसे वितरित एम्पलीफायर कहा जाता है, अनेक ट्यूबों का उपयोग करता है, किन्तु उनके इनपुट (नियंत्रण ग्रिड) टैप की गई एलसी विलंब लाइन के साथ जुड़े हुए थे, इसलिए ट्यूबों की इनपुट कैपेसिटेंस देरी लाइन का भाग बन गईं थी। साथ ही, उनके आउटपुट (प्लेटें/एनोड) भी इसी तरह अन्य टैप की गई विलंब लाइन से जुड़े थे, इसका आउटपुट विक्षेपण प्लेटों की आपूर्ति कर रहा था। यह एम्पलीफायर अधिकांशतः पुश-पुल होता था, इसलिए चार विलंब लाइनें थीं, दो इनपुट (ग्रिड) के लिए, और दो आउटपुट (प्लेट) के लिए उपयोग की जाती थी।

डिजिटल ऑसिलोस्कोप

पहला डिजिटल स्टोरेज ऑसिलोस्कोप (डीएसओ) मैडिसन, विस्कॉन्सिन के निकोलेट टेस्ट इंस्ट्रूमेंट द्वारा बनाया गया था। इसमें कम गति वाले एनालॉग-टू-डिजिटल कनवर्टर (1 मेगाहर्ट्ज, 12 बिट) का उपयोग किया गया जो मुख्य रूप से कंपन और चिकित्सा विश्लेषण के लिए उपयोग किया जाता है। पहला हाई-स्पीड डीएसओ (100 मेगाहर्ट्ज, 8 बिट) वाल्टर लेक्रॉय द्वारा विकसित किया गया था, जिन्होंने स्विट्जरलैंड में अनुसंधान केंद्र सीईआरएन के लिए हाई-स्पीड डिजिटाइज़र का उत्पादन करने के पश्चात्, न्यूयॉर्क, यूएसए के लेक्रॉय कॉर्पोरेशन की स्थापना की थी। लेक्रॉय (2012 से टेलीडाइन लेक्रॉय) संसार में ऑसिलोस्कोप के तीन सबसे बड़े निर्माताओं में से बना हुआ है।

1980 के दशक से, डिजिटल इलेक्ट्रॉनिक्स ऑसिलोस्कोप प्रचलित हो गए थे। डिजिटल स्टोरेज ऑसिलोस्कोप तरंगरूप के डिजिटल प्रतिनिधित्व को रिकॉर्ड करने और दिखाने के लिए तेज़ एनालॉग-टू-डिजिटल कनवर्टर और मेमोरी चिप्स का उपयोग करते हैं, जो क्लासिक एनालॉग ऑसिलोस्कोप की तुलना में ट्रिगरिंग, विश्लेषण और प्रदर्शन के लिए बहुत अधिक तरंगरूप प्रदान करता है। अपने एनालॉग पूर्ववर्ती के विपरीत, डिजिटल स्टोरेज ऑसिलोस्कोप प्री-ट्रिगर घटनाओं को दिखा सकता है, विरल या इंटरमिटेंट घटनाओं की रिकॉर्डिंग और इलेक्ट्रॉनिक अस्तव्यस्तता की ट्रबलशूटिंग के लिए और आयाम हो सकता है। 2006 तक अधिकांश नए ऑसिलोस्कोप (शिक्षा और कुछ विशिष्ट बाज़ारों को छोड़कर) डिजिटल हैं।

डिजिटल स्कोप स्थापित मेमोरी और ट्रिगर फ़ंक्शंस के प्रभावी उपयोग पर निर्भर करते हैं: पर्याप्त मेमोरी नहीं है और उपयोगकर्ता उन घटनाओं को मिस कर देता है जिनकी वह जांच करना चाहते हैं; यदि स्कोप में बड़ी मेमोरी है किन्तु इच्छानुसार ट्रिगर नहीं होता है, जिससे उपयोगकर्ता को घटनाए खोजने में कठिनाई होती है।

डीएसओ ने हाथ से पकड़े जाने वाले डिजिटल ऑसिलोस्कोप के निर्माण का भी नेतृत्व किया था, जो अनेक परीक्षण और क्षेत्र सेवा अनुप्रयोगों के लिए उपयोगी है। हाथ से पकड़ने वाला ऑसिलोस्कोप सामान्यतः वास्तविक समय का ऑसिलोस्कोप होता है, इसके प्रदर्शन के लिए मोनोक्रोम या रंगीन लिक्विड क्रिस्टल डिस्प्ले का उपयोग किया जाता है।

पीसी के प्रचलन में वृद्धि के कारण, पीसी-आधारित ऑसिलोस्कोप अधिक सामान्य होते जा रहे हैं। पीसी प्लेटफ़ॉर्म स्टैंडअलोन ऑसिलोस्कोप का भाग हो सकता है या बाहरी ऑसिलोस्कोप के साथ संयोजन में स्टैंडअलोन पीसी के रूप में हो सकता है। बाहरी ऑसिलोस्कोप के साथ, सिग्नल बाहरी हार्डवेयर (जिसमें एनालॉग-टू-डिजिटल कनवर्टर और मेमोरी सम्मिलित है) पर कैप्चर किया जाता है और कंप्यूटर पर प्रेषित किया जाता है, जहां इसे संसाधित और प्रदर्शित किया जाता है।

टिप्पणियाँ

  1. Hawkins (1917, p. 1844) Fig. 2589
  2. Hawkins (1917, pp. 1841–1846)
  3. Hawkins (1917, p. 1850), Fig. 2597
  4. Hawkins (1917, p. 1851), Fig. 2598
  5. Hawkins (1917, pp. 1849–1851)
  6. Hawkins (1917, p. 1858), Fig. 2607
  7. Hawkins (1917, p. 1855), Fig. 2620
  8. Hawkins (1917, p. 1866), Figs. 2621–2623
  9. Hawkins (1917, p. 1867), Fig. 2625
  10. The Science of Musical Sounds, by Dayton Clarence Miller, published about 1924
  11. Late 1800s, possibly? Ganot's Physics, a very popular 19th-C physics text? IIrc, Miller also described this.
  12. Abramson (1995, p. 13)
  13. 13.0 13.1 Kularatna, Nihal (2003). "Chapter 5: Fundamentals of Oscilloscopes". Digital and analogue instrumentation: testing and measurement. Institution of Engineering and Technology. p. 165. ISBN 978-0-85296-999-1. Retrieved 2011-01-19.
  14. 14.0 14.1 Burns (1998, pp. 346–347)
  15. Oscilloscope catalog, Allen B. DuMont Labs, possibly 1949
  16. Operator's Manual: Model KG-635 DC to 5.2 MC 5" Wideband Oscilloscope, Maywood, IL: Knight Electronics Corporation, 1965, p. 3, Synchronization ... + internal, − internal, 60 cps, and external. Sync limiting provides semi-automatic operation with level control. Locks from waveform fundamentals up to 5 mc. Will sync on display amplitudes as low as 0.1 [inch] The KG-635 sync amplifier used a 12AT7 differential amplifier (V5). (id p. 15.) Sync level control would bias the amplifier into cutoff so action would only occur near the end of the sweep; the sync output was a negative pulse to the sweep generator; a diode pulse limiter clamped the sync pulse. (id p. 18.)
  17. KG-635 p. 18 stating, "Retrace blanking is obtained from the plate of V-6A and applied to the cathode of the CRT."
  18. Spitzer & Howarth 1972, p. 122
  19. Garland, Harry; Melen, Roger (1971). "ट्रिगर स्वीप को अपने दायरे में जोड़ें". Popular Electronics. 35 (1): 61–66.


संदर्भ