ए-भार (ए-वेटिंग)

From Vigyanwiki
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
10 हर्ट्ज़ – 20 किलोहर्ट्ज़ आवृत्ति स्तर में A-, B-, C- और D-वेटिंग का ग्राफ़

अंतर्राष्ट्रीय मानक अंतर्राष्ट्रीय इंटरनेशनल इलेक्ट्रोटेक्नीकल कमीशन: 2003 और ध्वनि दबाव स्तर के माप से संबंधित विभिन्न राष्ट्रीय मानकों में परिभाषित वेटिंग फिल्टर का ए-वेटिंग सबसे अधिक उपयोग किया जाता है।[1] ए-वेटिंग को उपकरण द्वारा मापे गए ध्वनि स्तरों पर प्रयुक्त किया जाता है जिससे मानव कान द्वारा अनुभव की जाने वाली सापेक्ष प्रबलता को ध्यान में रखा जा सकता है, क्योंकि कान कम ऑडियो आवृत्तियों के प्रति कम संवेदनशील होता है। डेसिबल में मापे गए ध्वनि दबाव स्तरों के लिए ऑक्टेव बैंड या थर्ड-ऑक्टेव बैंड द्वारा सूचीबद्ध मूल्यों की तालिका को अंकगणित रूप से जोड़कर इसे नियोजित किया जाता है। ध्वनि का वर्णन करने वाला एकल ए-वेटिंगित मान प्रदान करने के लिए परिणामी सप्तक बैंड माप सामान्यतः जोड़े जाते हैं (लघुगणकीय विधि); इकाइयों को डीबी (ए) के रूप में लिखा जाता है। मूल्यों के अन्य वेटिंग सेट बी, सी, डी और अब जेड की चर्चा नीचे की गई है।

घटता मूल रूप से विभिन्न औसत ध्वनि स्तरों पर उपयोग के लिए परिभाषित किया गया था, किन्तु ए-वेटिंग, चूँकि मूल रूप से केवल निम्न-स्तरीय ध्वनियों (लगभग 40 फोन) की माप के लिए अभिप्रेत है, अब सामान्यतः पर्यावरणीय ध्वनि और औद्योगिक ध्वनि के मापन के लिए उपयोग किया जाता है। साथ ही सभी ध्वनि स्तरों पर संभावित ध्वनि-प्रेरित श्रवण हानि और अन्य ध्वनि स्वास्थ्य प्रभाव का आकलन करते समय उपयोग किया जाता है; वास्तव में, ए-आवृत्ति-वेटिंग का उपयोग अब इन सभी मापों के लिए अनिवार्य है, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति स्तर में व्यावसायिक बहरेपन के साथ बहुत अच्छा संबंध दिखाया है। विशेष रूप से संयुक्त राज्य अमेरिका में ऑडियो उपकरणों में निम्न स्तर के ध्वनि को मापते समय भी इसका उपयोग किया जाता है। ब्रिटेन, यूरोप और दुनिया के कई अन्य भागो में, ब्रॉडकास्टर और ऑडियो इंजीनियर अधिक बार आईटीयू-आर 468 ध्वनि वेटिंग का उपयोग करते हैं, जिसे 1960 के दशक में बीबीसी और अन्य संगठनों द्वारा शोध के आधार पर विकसित किया गया था। इस शोध से पता चला है कि हमारे कान यादृच्छिक ध्वनि के लिए अलग तरह से प्रतिक्रिया करते हैं, और समान-वक्र, जिस पर ए, बी और सी वेटिंग आधारित थे, वास्तव में केवल शुद्ध सिंगल टोन के लिए मान्य हैं।

इतिहास

ए-वेटिंग की प्रारंभ फ्लेचर-मुनसन कर्व्स के काम से हुई थी, जिसके परिणामस्वरूप 1933 में समान-लाउडनेस कॉन्ट्रो के सेट का प्रकाशन हुआ था। तीन साल बाद ध्वनि स्तर मीटर के लिए पहले अमेरिकी मानक में इन वक्रों का उपयोग किया गया था।[2] यह एएनएसआई मानक, जिसे बाद में एएनएसआई एस1.4-1981 के रूप में संशोधित किया गया था, जिसमें बी-वेटिंग के साथ-साथ ए-वेटिंग कर्व सम्मिलित किया गया था, जो निम्न-स्तरीय मापों के अतिरिक्त किसी अन्य चीज के लिए उत्तरार्द्ध की अनुपयुक्तता को पहचानता है। किन्तु बी-वेटिंग तब से अनुपयोगी हो गई है। इसके पश्चात् कार्य, पहले ज़्विकर द्वारा और फिर शोमर द्वारा, विभिन्न स्तरों द्वारा उत्पन्न कठिनाई को दूर करने का प्रयास किया गया था, और बीबीसी द्वारा किए गए कार्य के परिणामस्वरूप सीसीआईआर-468 वेटिंगोत्तोलन हुआ था, जिसे वर्तमान में आईटीयू-आर 468 ध्वनि वेटिंग के रूप में बनाए रखा गया है, जो पर अधिक प्रतिनिधि रीडिंग देता है।

कमियां

शुद्ध स्वर की आवृत्ति के प्रोग्राम के रूप में मानव कान की संवेदनशीलता का प्रतिनिधित्व करने के लिए ए-वेटिंग मान्य है। ए-वेटिंग 40-फोन फ्लेचर-मुनसन कर्व्स पर आधारित था, जो मानव श्रवण के लिए समान-लाउडनेस समोच्च के प्रारंभिक निर्धारण का प्रतिनिधित्व करता था। चूँकि, क्योंकि दशकों के क्षेत्र के अनुभव ने मानव भाषण की आवृत्ति सीमा में ए मापदंड और व्यावसायिक बहरेपन के बीच बहुत अच्छा संबंध दिखाया है, यह मापदंड व्यावसायिक बहरेपन के कठिन परिस्थिति और ध्वनि वाले वातावरण में संकेतों या वाक् बोधगम्यता से संबंधित अन्य श्रवण समस्याओं के मूल्यांकन के लिए कई न्यायालयों में कार्यरत है।

प्रारंभिक और अधिक वर्तमान के निर्धारणों के बीच कथित विसंगतियों के कारण, अंतर्राष्ट्रीय मानकीकरण संगठन (आईएसओ) ने अपने मानक घटता को आईएसओ 226 में परिभाषित किया है, जो कि रिसर्च इंस्टीट्यूट ऑफ इलेक्ट्रिकल कम्युनिकेशन, तोहोकू विश्वविद्यालय, जापान द्वारा समन्वित अध्ययन की सिफारिशों के जवाब में है। . अध्ययन ने जापान, जर्मनी, डेनमार्क, यूके और यूएसए के शोधकर्ताओं द्वारा किए गए कई अध्ययनों के परिणामों को मिलाकर नए वक्र बनाए थे। (लगभग 40% डेटा के साथ जापान सबसे बड़ा योगदानकर्ता था।) इसके परिणामस्वरूप आईएसओ 226:2003 के रूप में मानकीकृत कर्व्स के नए सेट की वर्तमान ही में स्वीकृति हुई है। रिपोर्ट आश्चर्यजनक रूप से बड़े अंतरों पर टिप्पणी करती है, और तथ्य यह है कि मूल फ्लेचर-मुनसन रूपरेखा रॉबिन्सन-डैडसन की तुलना में वर्तमान के परिणामों के साथ उत्तम समझौते में हैं, जो विशेष रूप से कम-आवृत्ति में 10-15 डीबी तक भिन्न दिखाई देते हैं। क्षेत्र, उन कारणों के लिए जिन्हें स्पष्ट नहीं किया गया है। रिपोर्ट से यह भी पता चलता है कि 40-फोन फ्लेचर-मुनसन समोच्च आईएसओ 226: 2003 में सम्मिलित अद्यतन 60-फोन समोच्च के साथ उत्तम समझौते में है, जो सामान्य प्रमाण को चुनौती देता है कि ए-वेटिंग केवल शांत ध्वनियों के लिए बल का प्रतिनिधित्व करती है।[3]

फिर भी, ए-वेटिंग लाउडनेस कर्व के लिए उत्तम मेल होगा यदि यह 10 किलोहर्ट्ज़ से अधिक तेजी से गिरता है, और संभावना है कि यह समझौता इसलिए हुआ क्योंकि इलेक्ट्रॉनिक्स के प्रारंभी दिनों में तेज फिल्टर का निर्माण करना कठिन था। आजकल, ऐसी किसी सीमा की आवश्यकता नहीं है, जैसा कि आईटीयू-आर 468 वक्र द्वारा दर्शाया गया है। यदि आगे की बैंड-लिमिटिंग के बिना ए-वेटिंग का उपयोग किया जाता है, तो अल्ट्रासोनिक, या निकट अल्ट्रासोनिक ध्वनि उपस्थित होने पर विभिन्न उपकरणों पर अलग-अलग रीडिंग प्राप्त करना संभव है। इसलिए स्पष्ट मापन के लिए आधुनिक उपकरणों में A-वेटिंग वक्र के साथ संयोजित करने के लिए 20 किलोहर्ट्ज़ लो-पास फ़िल्टर की आवश्यकता होती है। इसे आईईसी 61012 में एयू वेटिंग के रूप में परिभाषित किया गया है और बहुत ही वांछनीय होने पर, वाणिज्यिक ध्वनि स्तर मीटर के लिए संभवतः ही कभी लगाया जाता है।

बी-, सी-, डी-, जी- और जेड-वेटिंग

अंतर्राष्ट्रीय मानक आईईसी 61672 द्वारा ए-आवृत्ति-वेटिंग को सभी ध्वनि स्तर मीटरों में फिट करना अनिवार्य है और आईएसओ 226 में दिए गए समान बल वाले समोच्चों के अनुमान हैं।[4] पुराने बी- और डी-आवृत्ति-वेटिंग अनुपयोगी हो गए हैं, किन्तु कई ध्वनि स्तर मीटर सी आवृत्ति-वेटिंग प्रदान करते हैं और इसकी फिटिंग अनिवार्य है कम से कम परीक्षण उद्देश्यों के लिए स्पष्ट (कक्षा एक) ध्वनि स्तर मीटर के लिए या आईईसी 537 माप मानक के अनुसार उच्च-स्तरीय विमान ध्वनि को मापते समय डी-आवृत्ति-वेटिंग को विशेष रूप से उपयोग के लिए डिज़ाइन किया गया था। डी-वेटिंग कर्व में बड़ा शिखर समान-बल की रूपरेखाओं की विशेषता नहीं है, किन्तु इस तथ्य को दर्शाता है कि मनुष्य यादृच्छिक ध्वनि को शुद्ध स्वरों से अलग तरह से सुनते हैं, ऐसा प्रभाव जो विशेष रूप से 6 किलोहर्ट्ज़ के आसपास उच्चारित होता है। ऐसा इसलिए है क्योंकि आंतरिक कान में कोक्लीअ के विभिन्न क्षेत्रों से अलग-अलग न्यूरॉन्स आवृत्तियों के संकीर्ण बैंड का जवाब देते हैं, किन्तु उच्च आवृत्ति वाले न्यूरॉन्स व्यापक बैंड को एकीकृत करते हैं और इसलिए शुद्ध टोन की तुलना में कई आवृत्तियों वाले ध्वनि के साथ प्रस्तुत किए जाने पर तेज ध्वनि का संकेत देते हैं।

आईएसओ मानक में निम्नलिखित परिवर्तनों के बाद, डी-आवृत्ति-वेटिंग का उपयोग अब केवल गैर-बाईपास-प्रकार के जेट इंजनों के लिए किया जाना चाहिए, जो केवल सैन्य विमानों पर पाए जाते हैं और वाणिज्यिक विमानों पर नहीं प्रयोग किये जाते है। इस कारण से, आज हल्के नागरिक विमान मापन के लिए ए-आवृत्ति-वेटिंग अनिवार्य है, जबकि बड़े परिवहन विमानों के प्रमाणन के लिए अधिक स्पष्ट लाउडनेस-करेक्टेड वेटिंग ईपीएनडीबी की आवश्यकता है।[5] डी-वेटिंग ईपीएनडीबी के अंतर्निहित माप का आधार है।

जेड- या जीरो आवृत्ति-वेटिंग को 2003 में अंतर्राष्ट्रीय मानक आईईसी 61672 में प्रस्तुत किया गया था और इसका उद्देश्य अधिकांशतः निर्माताओं द्वारा लगाए गए फ़्लैट या लीनियर आवृत्ति वेटिंग को बदलना था। इस परिवर्तन की आवश्यकता थी क्योंकि प्रत्येक ध्वनि स्तर मीटर निर्माता अपने स्वयं के निम्न और उच्च आवृत्ति कट-ऑफ़ (-3 डीबी) अंक चुन सकता था, जिसके परिणामस्वरूप अलग-अलग रीडिंग होती थी, विशेष रूप से जब चरम ध्वनि स्तर को मापा जा रहा था. यह 10 हर्ट्ज़ और 20 किलोहर्ट्ज़ ±1.5 डीबी के बीच समतल आवृत्ति प्रतिक्रिया है।[6] साथ ही, 31.5 हर्ट्ज और 8 किलोहर्ट्ज़ पर 3 डीबी बिंदुओं के साथ C-आवृत्ति-वेटिंग के पास सही चरम ध्वनि (एल.पी.के) के समझदारी से सही माप की अनुमति देने के लिए पर्याप्त बैंडपास नहीं था।

जी-वेटिंग का उपयोग 8 हर्ट्ज से लेकर लगभग 40 हर्ट्ज तक की इन्फ्रासाउंड स्तर में मापन के लिए किया जाता है।[7]

मानक आईईसी 61672:2003 के मुख्य भाग में B- और D-आवृत्ति-वेटिंग का वर्णन नहीं किया गया है, किन्तु उनकी आवृत्ति प्रतिक्रियाएं पुराने आईईसी 60651 में पाई जा सकती हैं, चूँकि अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन द्वारा इसे औपचारिक रूप से वापस ले लिया गया है आईईसी 61672:2003 या आईईसी 61672 में आवृत्ति वेटिंग टॉलरेंस को पहले के मानकों आईईसी 179 और आईईसी 60651 की तुलना में कड़ा कर दिया गया है और इस प्रकार पहले के विनिर्देशों का अनुपालन करने वाले उपकरणों का उपयोग नियमबद्ध रूप से आवश्यक मापों के लिए नहीं किया जाना चाहिए।

पर्यावरण और अन्य ध्वनि माप

पोर्टेबल एयर कंप्रेसर से संबंधित लेबल

ए-वेटिंगित डेसिबल संक्षिप्त रूप से डीबी (ए) या डीबीए हैं। जब ध्वनिक (कैलिब्रेटेड माइक्रोफोन) मापों को संदर्भित किया जा रहा है, तब उपयोग की जाने वाली इकाइयाँ डेसिबल ध्वनि दबाव स्तर होती है जो 20 माइक्रोपास्कल = 0 डीबी एसपीएल के संदर्भ में होंटी है [nb 1]

पर्यावरणीय ध्वनि माप के लिए ए-वेटिंग कर्व व्यापक रूप से अपनाया गया है, और कई ध्वनि स्तर मीटरों में मानक है। ए-वेटिंग सिस्टम का उपयोग पर्यावरणीय ध्वनि के किसी भी माप में किया जाता है (उदाहरण के लिए सड़क ध्वनि, रेल ध्वनि, विमान ध्वनि सम्मिलित हैं)। काम पर ध्वनि डोसिमीटर माप सहित तेज ध्वनि के कारण होने वाली संभावित श्रवण हानि का आकलन करने के लिए ए-वेटिंग भी आम उपयोग में है। प्रत्येक दिन 85 डीबी(A) से अधिक का ध्वनि स्तर सुनने की क्षति के कठिन परिस्थिति कारक को बढ़ा देता है।

रेफ्रिजरेटर, फ्रीजर और कंप्यूटर प्रशंसकों जैसे घरेलू उपकरणों के लिए बिक्री साहित्य पर ध्वनि स्तर के ए-वेटिंगित एसपीएल माप तेजी से पाए जाते हैं। यूरोप में, कारों पर टायरों के ध्वनि को सामान्य करने के लिए ए-वेटिंगित ध्वनि स्तर का उपयोग किया जाता है।

बल से संगीत वाले स्थानों के आगंतुकों के लिए ध्वनि कठिन परिस्थिति सामान्यतः डीबी (ए) में भी व्यक्त किया जाता है, चूँकि कम आवृत्ति ध्वनि के उच्च स्तर की उपस्थिति इसे उचित नहीं ठहराती है।

ऑडियो पुनरुत्पत्ति और प्रसारण उपकरण

चूँकि ए-वेटिंग वक्र, ध्वनि माप के लिए व्यापक उपयोग में, 40-फोन फ्लेचर-मुनसन वक्र पर आधारित होने के लिए कहा जाता है, 1960 के दशक में अनुसंधान ने प्रदर्शित किया कि शुद्ध टोन का उपयोग करके किए गए समान-बल के निर्धारण सामान्यतः प्रासंगिक नहीं हैं ध्वनि की धारणा नहीं करता है।[8] ऐसा इसलिए है क्योंकि हमारे आंतरिक कान में कोक्लीअ वर्णक्रमीय पदार्थ के संदर्भ में ध्वनि का विश्लेषण करता है, प्रत्येक बाल सेल्ल आवृत्तियों के संकीर्ण बैंड का जवाब देती है जिसे महत्वपूर्ण बैंड के रूप में जाना जाता है। उच्च-आवृत्ति बैंड कम-आवृत्ति बैंड की तुलना में निरपेक्ष रूप से व्यापक हैं, और इसलिए ध्वनि स्रोत से आनुपातिक रूप से अधिक शक्ति 'संग्रह' करते हैं। चूँकि, जब से अधिक महत्वपूर्ण बैंड को उत्तेजित किया जाता है, जिससे विभिन्न बैंडों के आउटपुट को मानव मस्तिष्क द्वारा बल का आभास देने के लिए अभिव्यक्त किया जाता है। इन कारणों से नॉइज़ बैंड का उपयोग करके प्राप्त किए गए समान-लाउडनेस वक्र, शुद्ध टोन का उपयोग करके प्राप्त किए गए वक्रों की तुलना में 1 किलोहर्ट्ज़ से ऊपर की ओर झुकाव और 1 किलोहर्ट्ज़ से नीचे की ओर झुकाव दिखाते हैं।

6 किलोहर्ट्ज़ के क्षेत्र में ध्वनि के प्रति यह बढ़ी हुई संवेदनशीलता 1960 के दशक के अंत में कॉम्पैक्ट कैसेट रिकॉर्डर और डॉल्बी-बी ध्वनि में कमी की प्रारंभ के साथ विशेष रूप से स्पष्ट हो गई। ए-वेटिंगित ध्वनि माप भ्रामक परिणाम देने के लिए पाए गए क्योंकि उन्होंने 6 किलोहर्ट्ज़ क्षेत्र को पर्याप्त प्रमुखता नहीं दी थी जहां ध्वनि में कमी का सबसे बड़ा प्रभाव था, और 10 किलोहर्ट्ज़ और उससे ऊपर के ध्वनि को पर्याप्त रूप से क्षीण नहीं किया था (एक विशेष उदाहरण के साथ है) एफएम रेडियो सिस्टम पर 19 किलोहर्ट्ज़ पायलट टोन, जो सामान्यतः अश्रव्य होने के अतिरिक्त ए-वेटिंग द्वारा पर्याप्त रूप से क्षीण नहीं होता है, जिससे कभी-कभी उपकरण का टुकड़ा दूसरे की तुलना में व्यर्थ मापता है और फिर भी अलग-अलग वर्णक्रमीय पदार्थ के कारण उत्तम ध्वनि करता है।

आईटीयू-आर 468 ध्वनि वेटिंग इसलिए टोन के विपरीत सभी प्रकार के ध्वनि की व्यक्तिपरक प्रबलता को अधिक स्पष्ट रूप से प्रतिबिंबित करने के लिए विकसित किया गया था। यह वक्र, जो बीबीसी अनुसंधान विभाग द्वारा किए गए काम से निकला था, और कॉमेट कंसल्टेटिफ़ इंटरनेशनल पोर ला रेडियो द्वारा मानकीकृत किया गया था और बाद में कई अन्य मानक निकायों (अंतर्राष्ट्रीय इलेक्ट्रोटेक्निकल कमीशन, ब्रिटिश मानक संस्थान) द्वारा अपनाया गया और, as of 2006, आईटीयू द्वारा अनुरक्षित है। यह यूरोप में व्यापक रूप से उपयोग किया जाता है, विशेष रूप से प्रसारण में, और डॉल्बी प्रयोगशालाओं द्वारा अपनाया गया था, जिन्होंने फिल्म साउंडट्रैक और कॉम्पैक्ट कैसेट सिस्टम पर ध्वनि को मापते समय अपने उद्देश्यों के लिए इसकी उत्तम वैधता का एहसास किया था। ए-वेटिंग पर इसके फायदे अमेरिका में कम स्वीकार किए जाते हैं, जहां ए-वेटिंग का उपयोग अभी भी प्रमुख है। इसका उपयोग ब्रिटेन, यूरोप और ब्रिटिश साम्राज्य के पूर्व देशों जैसे ऑस्ट्रेलिया और दक्षिण अफ्रीका में प्रसारकों द्वारा किया जाता है।

कुछ सामान्य वेटिंगों का कार्य बोध

मानक [9] वेटिंग परिभाषित करता है डीबी इकाइयों में सहिष्णुता सीमा के साथ तालिकाओं द्वारा (विभिन्न प्रकार के कार्यान्वयन की अनुमति देने के लिए)। इसके अतिरिक्त, मानक वेटिंग फलन का वर्णन करता है [9] वेटिंग की गणना करने के लिए या वेटिंगोत्तोलन प्रोग्राम वेटिंगित ध्वनि स्तर के ध्वनि दबाव (ध्वनि की तीव्रता नहीं) पर प्रयुक्त होता है। ऑफ़सेट 1000 हर्ट्ज़ पर 0 डीबी का सामान्यीकरण सुनिश्चित करते हैं। उपयुक्त वेटिंग कार्य हैं:[10]

A

[9]

B

C

[9]

D

[11]

स्थानांतरण प्रोग्राम समकक्ष

लाभ घटता अनुभव किया जा सकता है [12] निम्नलिखित एस-डोमेन स्थानांतरण कार्यों द्वारा प्रयोग किया जाता है। चूँकि उन्हें इस तरह से परिभाषित नहीं किया गया है, मानक दस्तावेजों में सहनशीलता के साथ मूल्यों की तालिका द्वारा परिभाषित किया जा रहा है, इस प्रकार विभिन्न अनुभव की अनुमति देता है:

A

kA ≈ 7.39705 × 109

B

kB ≈ 5.99185 × 109

C

kC ≈ 5.91797 × 109

D

kD ≈ 91104.32

k-मान वे स्थिरांक होते हैं जिनका उपयोग फलन को 1 (0 डीबी) के लाभ के लिए सामान्यीकृत करने के लिए किया जाता है। ऊपर सूचीबद्ध मान फलन को 1 किलोहर्ट्ज़ पर 0 डीबी पर सामान्यीकृत करते हैं, जैसा कि वे सामान्यतः उपयोग किए जाते हैं। (यह सामान्यीकरण छवि में दिखाया गया है।)

यह भी देखें

टिप्पणियाँ

  1. dBrn adjusted is not a synonym for dB(A), but for dBa. (In telecommunications dBa denotes "decibels adjusted", i.e. weighted absolute noise power, which has nothing to do with A-weighting.)

संदर्भ

  1. Meyer-Bisch, Christian (2005). "[Measuring noise]". Médecine/Sciences. 21 (5): 546–550. doi:10.1051/medsci/2005215546. ISSN 0767-0974. PMID 15885208.
  2. Pierre, Jr., Richard L. St.; Maguire, Daniel J. (July 2004). "The Impact of A-weighting Sound Pressure Level Measurements during the Evaluation of Noise Exposure" (PDF). Retrieved 2011-09-13.
  3. "Precise and Full-range Determination of Two-dimensional Equal Loudness Contours" (PDF). Archived from the original (PDF) on 2007-09-27.
  4. Rimell, Andrew; Mansfield, Neil; Paddan, Gurmail (2015). "Design of digital filters for frequency weightings (A and C) required for risk assessments of workers exposed to noise". Industrial Health. 53 (53): 21–27. doi:10.2486/indhealth.2013-0003. PMC 4331191. PMID 25224333. S2CID 13997453.
  5. "BIP_2_2_jb ZIP file" (PDF).
  6. Lauer, Amanda; El‐Sharkawy, AbdEl‐Monem M.; Kraitchman, Dara; Edelstein, William (2012). "MRI Acoustic Noise Can Harm Experimental and Companion Animals". Journal of Magnetic Resonance Imaging. 36 (3): 743–747. doi:10.1002/jmri.23653. PMID 22488793. S2CID 7436249.
  7. Ratzel, U.; Bayer, O.; Brachat, P.; Hoffmann, M.; Jänke, K.; Kiesel, K.-J.; Mehnert, C.; Scheck, C.; Westerhausen, C.; Krapf, K.-G.; Herrmann, L.; Blaul, J., eds. (February 2020) [2016-02-26]. "Tieffrequente Geräusche inkl. Infraschall von Windkraftanlagen und anderen Quellen - Bericht über Ergebnisse des Messprojekts 2013-2015" (in Deutsch) (3 ed.). Karlsruhe, Germany: Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW), Referat 34 – Technischer Arbeitsschutz, Lärmschutz. pp. 10–11, 13, 17, 22–24, 27–28, 32–33, 38–39, 43–44, 49, 90. Retrieved 2021-06-07. p. 90: Für den Bereich des Infraschalls gibt es eine eigene Frequenzbewertung, die so genannte G-Bewertung. Entsprechend bewertete Pegel werden als dB(G) – „Dezibel G" – angegeben. Bekannter ist die A-Bewertung von Geräuschen als dB(A) – „Dezibel A" –, die dem Hörempfinden des Menschen nachempfunden ist. Die G-Bewertung hat ihren Schwerpunkt bei 20 Hz. Zwischen 10 Hz und 25 Hz werden Pegel verstärkt, darunter und darüber fällt die Bewertungskurve rasch ab. Zweck der G-Bewertung ist es, eine Situation im Hinblick auf tiefe Frequenzen bzw. Infraschall mit einer einzigen Zahl zu charakterisieren. Ein Nachteil ist, dass Frequenzen unterhalb 8 Hz und oberhalb 40 Hz kaum mehr einen Beitrag leisten. [1] (104 pages)
  8. Bauer, B.; Torick, E. (1966). "Researches in loudness measurement". IEEE Transactions on Audio and Electroacoustics. 14 (3): 141–151. doi:10.1109/TAU.1966.1161864.
  9. 9.0 9.1 9.2 9.3 IEC 61672-1:2013 Electroacoustics - Sound level meters - Part 1: Specifications. IEC. 2013.
  10. "Frequency weighting equations". Cross Spectrum. 2004. Archived from the original on 2011-06-17.
  11. Aarts, Ronald M. (1 March 1992). "A Comparison of Some Loudness Measures for Loudspeaker Listening Tests". Audio Engineering Society. 40 (3): 142–146. Archived from the original on 2022-10-27. Retrieved 2022-10-27.
  12. "Noise Measurement Briefing". Product Technology Partners Ltd. Archived from the original on 2008-06-30.


अग्रिम पठन

  • Audio Engineer's Reference Book, 2nd Ed 1999, edited Michael Talbot Smith, Focal Press
  • An Introduction to the Psychology of Hearing 5th ed, Brian C. J. Moore, Elsevier Press

बाहरी संबंध