स्कॉट निरंतरता

From Vigyanwiki
Revision as of 11:29, 30 August 2023 by Abhishekkshukla (talk | contribs) (→‎यह भी देखें)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, दो आंशिक रूप से क्रमित समुच्चय P और Q दिए गए हैं, उनके बीच एक फलन (गणित) f: P → Q 'स्कॉट-कंटीन्युअस' है (गणितज्ञ दाना स्कॉट के नाम पर) यदि यह सभी निर्देशित सर्वोच्च को संरक्षित करने वाले फलन (क्रमित सिद्धांत) को सीमित करता है . अर्थात्, P में सर्वोच्च के साथ P के प्रत्येक निर्देशित उपसमुच्चय D के लिए, इसकी छवि (गणित) में Q में एक सर्वोच्च है, और वह सर्वोच्च D के सर्वोच्च की छवि है, अर्थात। , जहाँ निर्देशित जुड़ाव है.[1] जब सत्य मूल्यों का पोसमुच्चय है, अथार्त सिएरपिंस्की समष्टि, तो स्कॉट-निरंतर फलन विवृत समुच्चयों का संकेतक फलन है, और इस प्रकार सिएरपिंस्की समष्टि विवृत समुच्चयों के लिए वर्गीकृत समष्टि है।[2]

आंशिक रूप से क्रमित किए गए समुच्चय P के उपसमुच्चय O को 'स्कॉट-ओपन' कहा जाता है यदि यह एक शीर्ष समुच्चय है और यदि यह 'निर्देशित जोड़ों द्वारा पहुंच योग्य नहीं है', अथार्त यदि O में सर्वोच्च के साथ सभी निर्देशित समुच्चय D में गैर-रिक्त प्रतिच्छेदन है (समुच्चय सिद्धांत) O के साथ आंशिक रूप से क्रमित किए गए समुच्चय P के स्कॉट-ओपन उपसमुच्चय, P, 'स्कॉट टोपोलॉजी' पर एक टोपोलॉजिकल समष्टि बनाते हैं। आंशिक रूप से क्रमित किए गए समुच्चयों के बीच एक फलन स्कॉट-निरंतर है यदि और केवल यदि यह स्कॉट टोपोलॉजी के संबंध में निरंतर फलन (टोपोलॉजी) है।[1]

स्कॉट टोपोलॉजी को पहले पूर्ण लैटिस के लिए डाना स्कॉट द्वारा परिभाषित किया गया था और बाद में इच्छानुसार से आंशिक रूप से क्रमित किए गए समुच्चय के लिए परिभाषित किया गया था।[3]

स्कॉट-निरंतर फलन लैम्ब्डा कैलकुली के मॉडल और कंप्यूटर प्रोग्राम के सांकेतिक शब्दार्थ के अध्ययन में दिखाई देते हैं।[3]

गुण

एक स्कॉट-निरंतर फलन सदैव मोनोटोन फलन होता है।

निर्देशित पूर्ण आंशिक क्रम का एक उपसमुच्चय आंशिक क्रम से प्रेरित स्कॉट टोपोलॉजी के संबंध में संवृत समुच्चय है यदि और केवल यदि यह एक निचला समुच्चय है और निर्देशित उपसमुच्चय के सर्वोच्चता के तहत संवृत है।[4]

स्कॉट टोपोलॉजी के साथ एक निर्देशित पूर्ण आंशिक क्रम (डीसीपीओ) सदैव एक कोलमोगोरोव समष्टि होता है (यानी, यह T0 पृथक्करण सिद्धांत को संतुष्ट करता है)। चूँकि , स्कॉट टोपोलॉजी वाला एक डीसीपीओ हॉसडॉर्फ़ समष्टि है यदि और केवल यदि आदेश तुच्छ है।[4] सम्मिलित किए जाने पर स्कॉट-ओपन समुच्चय एक पूर्ण जाली बनाते हैं।[5]

किसी भी कोलमोगोरोव समष्टि के लिए, टोपोलॉजी उस समष्टि पर एक क्रमित संबंध, विशेषज्ञता क्रम उत्पन्न करती है: xy यदि और केवल यदि x का प्रत्येक विवृत प्रतिवेश भी y का एक विवृत पड़ोस है। डीसीपीओ डी के क्रमित संबंध को स्कॉट टोपोलॉजी द्वारा प्रेरित विशेषज्ञता क्रम के रूप में स्कॉट-ओपन समुच्चय से पुनर्निर्मित किया जा सकता है। चूँकि, स्कॉट टोपोलॉजी से लैस एक डीसीपीओ को सोबर की आवश्यकता नहीं है: सोबर समष्टि की टोपोलॉजी से प्रेरित विशेषज्ञता क्रम उस समष्टि को एक डीसीपीओ बनाता है, किंतु इस क्रमित से प्राप्त स्कॉट टोपोलॉजी मूल टोपोलॉजी से उत्तम है।[4]

उदाहरण

किसी दिए गए टोपोलॉजिकल समष्टि में विवृत समुच्चय जब समावेशन द्वारा क्रमबद्ध होते हैं तो एक जाली बनाते हैं जिस पर स्कॉट टोपोलॉजी को परिभाषित किया जा सकता है। टोपोलॉजिकल समष्टि T का एक उपसमुच्चय स्कॉट टोपोलॉजी है[5]

सीपीओ के लिए, डीसीपीओ की कार्टेशियन संवृत श्रेणी, स्कॉट-निरंतर फलनों के दो विशेष रूप से उल्लेखनीय उदाहरण करी और प्रयुक्त हैं।[6]

नुएल बेलनैप ने तार्किक संयोजकों को चार-मूल्य वाले तर्क तक विस्तारित करने के लिए स्कॉट निरंतरता का उपयोग किया जाता है

यह भी देखें

फ़ुटनोट

  1. 1.0 1.1 Vickers, Steven (1989). तर्क के माध्यम से टोपोलॉजी. Cambridge University Press. ISBN 978-0-521-36062-3.
  2. Scott topology at the nLab
  3. 3.0 3.1 Scott, Dana (1972). "Continuous lattices". In Lawvere, Bill (ed.). टोपोज़, बीजगणितीय ज्यामिति और तर्क. Lecture Notes in Mathematics. Vol. 274. Springer-Verlag.
  4. 4.0 4.1 4.2 Abramsky, S.; Jung, A. (1994). "Domain theory" (PDF). In Abramsky, S.; Gabbay, D.M.; Maibaum, T.S.E. (eds.). कंप्यूटर विज्ञान में तर्क की पुस्तिका. Vol. III. Oxford University Press. ISBN 978-0-19-853762-5.
  5. 5.0 5.1 Bauer, Andrej & Taylor, Paul (2009). "अमूर्त स्टोन द्वंद्व में डेडेकाइंड रियल्स". Mathematical Structures in Computer Science. 19 (4): 757–838. CiteSeerX 10.1.1.424.6069. doi:10.1017/S0960129509007695. S2CID 6774320. Retrieved October 8, 2010.
  6. Barendregt, H.P. (1984). लैम्ब्डा कैलकुलस. North-Holland. ISBN 978-0-444-87508-2. (See theorems 1.2.13, 1.2.14)


संदर्भ