सुपरइलिप्स

From Vigyanwiki
Revision as of 13:28, 4 September 2023 by Neeraja (talk | contribs) (Neeraja moved page सुपरलिप्स to सुपरइलिप्स without leaving a redirect)
सुपरलेलिप्स के उदाहरण

एक सुपरलिप्स, जिसे गेब्रियल लैम के बाद लैम कर्व के रूप में भी जाना जाता है, दीर्घवृत्त जैसा दिखने वाला एक बंद वक्र है, जो अर्ध-प्रमुख अक्ष और अर्ध-लघु अक्ष की ज्यामितीय विशेषताओं और उनके बारे में समरूपता को बनाए रखता है, लेकिन एक अलग समग्र आकार है।

कार्तीय निर्देशांक प्रणाली में, वक्र पर सभी बिंदुओं का समुच्चय समीकरण को संतुष्ट करता है।

जहाँ और धनात्मक संख्याएँ हैं, और एक संख्या के चारों ओर वर्टीकल बार्स संख्या के पूर्ण मान को दर्शाती हैं।

विशिष्ट मामले

यह सूत्र आयत −a ≤ x ≤ +a और −b ≤ y ≤ +b में निहित एक बंद वक्र को परिभाषित करता है। प्राचलों a और b को वक्र का अर्ध-व्यास कहा जाता है।

वक्र का समग्र आकार घातांक n के मान द्वारा निर्धारित किया जाता है, जैसा कि निम्नलिखित तालिका में दिखाया गया है:

सुपरलिप्स अवतल (अंदर की ओर घुमावदार) भुजाओं वाले चार-सशस्त्र तारे की तरह दिखता है।

n = 1/2 के लिए, विशेष रूप से, चार चापों में से प्रत्येक परवलय का एक खंड है।

एक एस्ट्रोइड विशेष मामला a = b, n = 2/3 है।

सुपरलिप्स के साथ n = 12, a = b = 1
वक्र एक समचतुर्भुज है जिसके कोने (±a, 0) और (0, ±b) हैं।
वक्र समान कोनों के साथ लेकिन उत्तल (बाहर की ओर घुमावदार) पक्षों के साथ एक समचतुर्भुज जैसा दिखता है।

वक्रता बिना किसी सीमा के बढ़ जाती है क्योंकि कोई अपने चरम बिंदुओं पर पहुंचता है।

सुपरलिप्स के साथ n = 32, a = b = 1
वक्र एक साधारण दीर्घवृत्त है (विशेष रूप से, एक वृत्त यदि a = b)।
वक्र सतही रूप से गोल कोनों के साथ एक आयत की तरह दिखता है।

बिंदुओं (±a, 0) और (0, ±b) पर वक्रता शून्य होती है।

स्क्विर्कल, के साथ सुपरलिप्सn = 4, a = b = 1

यदि n < 2, आकृति को हाइपोएलिप्स भी कहा जाता है; अगर n > 2, एक हाइपरलिप्स

जब n ≥ 1 और a = b, सुपरलिप्स n-नॉर्म में R2 की गेंद की सीमा होती है।

सुपरलिप्स के चरम बिंदु हैं (±a, 0) और (0, ±b), और इसके चार "कोने" हैं (±sa, ±sb), जहां (कभी-कभी "सुपरनेस" कहा जाता है "[1])।

गणितीय गुण

जब n एक धनात्मक परिमेय संख्या p/q (न्यूनतम शब्दों में) हो, तो सुपरलिप्स का प्रत्येक चतुर्थांश क्रम pq का समतल बीजगणितीय वक्र होता है।[2] विशेष रूप से, जब a = b = 1 और n एक सम पूर्णांक है, तो यह डिग्री n का फर्मेट वक्र होता है। उस मामले में, यह गैर-एकल है, लेकिन सामान्य तौर पर, यह एकल होगा। यदि अंश सम नहीं है, तो वक्र को एक ही बीजगणितीय वक्र के भागों से विभिन्न अभिविन्यासों में एक साथ जोड़ा जाता है।

वक्र पैरामीट्रिक समीकरणों द्वारा दिया गया है (पैरामीटर के साथ कोई प्राथमिक ज्यामितीय व्याख्या नहीं है)

जहां प्रत्येक ± को अलग से चुना जा सकता है ताकि का प्रत्येक मान वक्र पर चार बिंदु दे। समतुल्य रूप से, मान लीजिए कि की सीमा से अधिक है,

जहां साइन फंक्शन है

यहाँ धनात्मक क्षैतिज अक्ष और मूल से किरण के बीच का कोण नहीं है, क्योंकि इस कोण की स्पर्शरेखा y/x के बराबर है, जबकि पैरामीट्रिक अभिव्यक्तियों में

सुपरलिप्स के अंदर के क्षेत्र को गामा फ़ंक्शन के संदर्भ में व्यक्त किया जा सकता है

या बीटा फ़ंक्शन के संदर्भ में

पेडल वक्र की गणना करना अपेक्षाकृत सरल है। विशेष रूप से, पेडल

द्वारा ध्रुवीय निर्देशांक में दिया जाता है[3]

सामान्यीकरण

विभिन्न प्रतिपादकों के साथ एक सुपरलिप्स के रूपांतर

सुपरलिप्स को आगे सामान्यीकृत किया गया है:

या

ध्यान दें कि एक पैरामीटर है जो प्रारंभिक कार्यों के माध्यम से भौतिक कोण से जुड़ा हुआ नहीं है।

इतिहास

प्रपत्र का सामान्य कार्तीय संकेतन फ्रांसीसी गणितज्ञ गेब्रियल लैम (1795-1870) से आता है, जिन्होंने दीर्घवृत्त के लिए समीकरण को सामान्य किया।

1952 में प्रकाशित हर्मन ज़ैफ़ का टाइपफ़ेस मेलिओर, ओ जैसे अक्षरों के लिए सुपरलिप्स का उपयोग करता है। तीस साल बाद डोनाल्ड नुथ अपने कंप्यूटर आधुनिक प्रकार के परिवार में सच्चे दीर्घवृत्त और सुपरलिप्स (दोनों घन स्प्लिन द्वारा अनुमानित) के बीच चयन करने की क्षमता का निर्माण करेंगे।

सुपरलिप्स का नाम डेनिश कवि और वैज्ञानिक पीट हेन (1905-1996) ने रखा था, हालांकि उन्होंने इसकी खोज नहीं की थी जैसा कि कभी-कभी दावा किया जाता है। 1959 में, स्टॉकहोम, स्वीडन में शहर के योजनाकारों ने अपने शहर के स्क्वायर सर्गल टॉर्ग में एक चौराहे के लिए एक डिजाइन चुनौती की घोषणा की। पीट हेन का जीत का प्रस्ताव n = 2.5 और a/b = 6/5 के साथ एक सुपरलिप्स पर आधारित था।[4] जैसा कि उसने समझाया:

    मनुष्य वह जानवर है जो लकीरें खींचता है और फिर खुद ही उस पर ठोकर खा जाता है। सभ्यता के पूरे पैटर्न में दो प्रवृत्तियाँ रही हैं, एक सीधी रेखाओं की ओर और एक आयताकार पैटर्न और एक वृत्ताकार रेखाओं की ओर। दोनों प्रवृत्तियों के यांत्रिक और मनोवैज्ञानिक कारण होते हैं। सीधी रेखाओं से बनी चीजें आपस में अच्छी तरह जुड़ जाती हैं और जगह बचाती हैं। और हम आसानी से — शारीरिक या मानसिक रूप से — गोल रेखाओं से बनी चीज़ों के इर्द-गिर्द घूम सकते हैं। लेकिन हम एक कठोर स्थिति में हैं, एक या दूसरे को स्वीकार करना पड़ रहा है, जबकि अक्सर कोई मध्यवर्ती रूप बेहतर होगा। कुछ फ्रीहैंड बनाने के लिए - जैसे कि पैचवर्क ट्रैफिक सर्कल उन्होंने स्टॉकहोम में आजमाया - नहीं चलेगा। यह निश्चित नहीं है, वृत्त या वर्ग की तरह निश्चित नहीं है। आप नहीं जानते कि यह क्या है। यह सौंदर्य की दृष्टि से संतोषजनक नहीं है। सुपर-एलीप्से ने समस्या हल कर दी। यह न तो गोल है और न ही आयताकार, लेकिन बीच में है। फिर भी यह स्थिर है, यह निश्चित है - इसमें एक एकता है।

सर्गल्स टॉर्ग 1967 में पूरा हुआ। इस बीच, पीट हेन ने सुपरलिप्स का उपयोग अन्य कलाकृतियों, जैसे बिस्तर, व्यंजन, टेबल आदि में किया।[5] सबसे लंबी धुरी के चारों ओर एक सुपरलिप्स को घुमाकर, उन्होंने सुपरएग बनाया, एक ठोस अंडे जैसा आकार जो एक सपाट सतह पर सीधा खड़ा हो सकता था, और एक नवीनता खिलौने के रूप में विपणन किया गया था।

1968 में, जब वियतनाम युद्ध के लिए पेरिस में वार्ताकार वार्ता तालिका के आकार पर सहमत नहीं हो सके, बालिंस्की, कीरोन अंडरवुड और होल्ट ने न्यूयॉर्क टाइम्स को लिखे एक पत्र में एक सुपरएलिप्टिकल टेबल का सुझाव दिया।[4] सुपरलिप्स का उपयोग मेक्सिको सिटी में 1968 के एज़्टेका ओलंपिक स्टेडियम के आकार के लिए किया गया था।

वाल्डो आर. टॉबलर ने 1973 में प्रकाशित एक मैप प्रोजेक्शन, टॉबलर हाइपरलिप्टिकल प्रोजेक्शन विकसित किया,[6] जिसमें मेरिडियन सुपरलिप्स के आर्क हैं।

समाचार कंपनी द लोकल (स्थानीय) के लोगो में सर्गल्स टोरग के अनुपात से मेल खाने वाला एक झुका हुआ सुपरलिप्स है। पिट्सबर्ग स्टीलर्स के लोगो में तीन जुड़े हुए सुपरलिप्स का उपयोग किया जाता है।

कंप्यूटिंग में, मोबाइल ऑपरेटिंग सिस्टम iOS ऐप आइकन के लिए एक सुपरलिप्स कर्व का उपयोग करता है, जो गोल कोनों की शैली को संस्करण 6 तक उपयोग करता है।[7]

ज़ैफ़ के मेलियर टाइपफ़ेस में 'ओ' और 'ओ' अक्षरों की बाहरी रूपरेखाओं को एन = के साथ सुपरलिप्स द्वारा वर्णित किया गया है log(1/2) / log (7/9) ≈ 2.758

यह भी देखें

  • ऐस्ट्रॉइड, n = 2⁄3 और a = b वाला सुपरएलिप्स, चार क्यूस्प वाला एक हाइपोसाइक्लॉइड है।

संदर्भ

  1. Donald Knuth: The METAFONTbook, p. 126
  2. For a derivation of the algebraic equation in the case where n = 2/3, see p. 3 of http://xahlee.info/SpecialPlaneCurves_dir/Astroid_dir/astroid.pdf.
  3. J. Edwards (1892). अंतर कलन. London: MacMillan and Co. pp. 164.
  4. 4.0 4.1 Gardner, Martin (1977), "Piet Hein's Superellipse", Mathematical Carnival. A New Round-Up of Tantalizers and Puzzles from Scientific American, New York: Vintage Press, pp. 240–254, ISBN 978-0-394-72349-5
  5. The Superellipse, in The Guide to Life, The Universe and Everything by BBC (27 June 2003)
  6. Tobler, Waldo (1973), "The hyperelliptical and other new pseudocylindrical equal area map projections", Journal of Geophysical Research, 78 (11): 1753–1759, Bibcode:1973JGR....78.1753T, CiteSeerX 10.1.1.495.6424, doi:10.1029/JB078i011p01753.
  7. http://iosdesign.ivomynttinen.com/

बाहरी कड़ियाँ