सिम्प्लेक्टोमोर्फिज्म

From Vigyanwiki

गणित में, सिम्प्लेक्टोमोर्फिज्म या सिम्प्लेक्टिक मानचित्र सिंपलेक्टिक मैनिफोल्ड की श्रेणी (गणित) में समाकृतिकता है। शास्त्रीय यांत्रिकी में, सिम्प्लेक्टोमोर्फिज्म चरण समष्टि के परिवर्तन का प्रतिनिधित्व करता है जो आयतन-संरक्षण करता है और चरण समष्टि की सहानुभूतिपूर्ण संरचना को संरक्षित करता है, और इसे विहित परिवर्तन कहा जाता है।

औपचारिक परिभाषा

दो सिम्प्लेक्टिक मैनिफोल्ड के मध्य अंतर को सिम्प्लेक्टोमोर्फिज्म कहा जाता है जो इस प्रकार है:

जहां पुलबैक (अंतर ज्यामिति) है से सहानुभूतिपूर्ण भिन्नता से (छद्म-) समूह हैं, जिसे सिम्प्लेक्टोमोर्फिज्म समूह कहा जाता है (नीचे देखें)।

सिम्प्लेक्टोमोर्फिज्म का अतिसूक्ष्म संस्करण सिम्प्लेक्टिक सदिश क्षेत्र देता है। सदिश क्षेत्र को सिंपलेक्टिक कहा जाता है यदि

यदि प्रवाह हो तो सिंपलेक्टिक है का प्रत्येक के लिए लक्षणात्मकता है ये सदिश क्षेत्र लाइ उपबीजगणित का निर्माण करते हैं यहां, स्मूथ सदिश क्षेत्रों का समुच्चय है , और सदिश क्षेत्र के अनुदिश लाई व्युत्पन्न है।

सिम्पेक्टोमोर्फिज्म के उदाहरणों में शास्त्रीय यांत्रिकी और सैद्धांतिक भौतिकी के विहित परिवर्तन, किसी भी हैमिल्टनियन फलन से जुड़ा प्रवाह, मैनिफोल्ड्स के किसी भी भिन्नता से प्रेरित कोटैंजेंट बंडल पर मानचित्र और सहसंयुक्त कक्षा पर लाइ समूह के तत्व की सहसंयोजक क्रिया सम्मिलित है।

प्रवाह

सिम्पलेक्टिक मैनिफोल्ड पर कोई भी सुचारू कार्य, परिभाषा के अनुसार, हैमिल्टनियन सदिश क्षेत्र को उत्पन्न करता है और ऐसे सभी सदिश क्षेत्र का समुच्चय सिम्प्लेक्टिक सदिश क्षेत्र के लाई बीजगणित का उप-बीजगणित बनाता है। सिम्पलेक्टिक सदिश क्षेत्र के प्रवाह का एकीकरण सिम्पेक्टोमोर्फिज्म है। चूंकि सिम्प्लेक्टोमॉर्फिज्म सिंपलेक्टिक रूप 2-फॉर्म को संरक्षित करता है और इसलिए सिम्प्लेक्टिक आयतन फॉर्म, हैमिल्टनियन यांत्रिकी में लिउविले के प्रमेय का पालन करता है। हैमिल्टनियन सदिश क्षेत्रों से उत्पन्न होने वाले सिम्प्लेक्टोमोर्फिज्म को हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के रूप में जाना जाता है।

तब से {H, H} = XH(H) = 0, हैमिल्टनियन सदिश क्षेत्र का प्रवाह भी H को संरक्षित करता है। भौतिकी में इसे ऊर्जा के संरक्षण के नियम के रूप में व्याख्या की जाती है।

यदि किसी कनेक्टेड सिम्पलेक्टिक मैनिफोल्ड की प्रथम बेट्टी संख्या शून्य है, सिम्पलेक्टिक और हैमिल्टनियन सदिश क्षेत्र युग्मित होते हैं, इसलिए हैमिल्टनियन आइसोटोप और सिम्प्लेक्टोमोर्फिज्म की सिंपलेक्टिक आइसोटोपी की धारणाएं संगुमित होती हैं।

यह दिखाया जा सकता है कि जियोडेसिक के समीकरणों को हैमिल्टनियन प्रवाह के रूप में तैयार किया जा सकता है, जियोडेसिक्स को हैमिल्टनियन प्रवाह के रूप में देखें।

(हैमिल्टनियन) सिम्प्लेक्टोमोर्फिज्म का समूह

कई गुना से लक्षणात्मकताएं अपने आप में अनंत-आयामी छद्म समूह बनाते हैं। संबंधित लाई बीजगणित में सिम्प्लेक्टिक सदिश क्षेत्र होते हैं। हैमिल्टनियन सिम्प्लेक्टोमोर्फिम्स ऐसा उपसमूह बनाते हैं, जिसे लाई बीजगणित हैमिल्टनियन सदिश क्षेत्रों द्वारा दिया जाता है। उत्तरार्द्ध पॉइसन ब्रैकेट, मॉड्यूलो स्थिरांक के संबंध में मैनिफोल्ड पर स्मूथ कार्यों के लाई बीजगणित के लिए आइसोमोर्फिक है।

हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म का समूह को सामान्यतः इस रूप में दर्शाया जाता है।

बान्यागा के प्रमेय के अनुसार, हैमिल्टनियन भिन्नता के समूह सरल हैं। उनके पास हॉफर पैरामीटर द्वारा दी गई प्राकृतिक ज्यामिति है। कुछ सरल सिम्प्लेक्टिक चार-मैनिफोल्ड्स के लिए सिम्प्लेक्टोमोर्फिज्म समूह के होमोटॉपी प्रकार, जैसे कि गोले के उत्पाद की गणना ग्रोमोव के स्यूडोहोलोमॉर्फिक वक्रों के सिद्धांत का उपयोग करके की जा सकती है।

रीमानियन ज्यामिति के साथ तुलना

रीमैनियन मैनिफोल्ड्स के विपरीत, सिम्प्लेक्टिक मैनिफोल्ड्स अधिक कठोर नहीं हैं: डार्बौक्स के प्रमेय से ज्ञात होता है कि समान आयाम के सभी सिम्प्लेक्टिक मैनिफोल्ड समष्टिीय रूप से आइसोमोर्फिक हैं। इसके विपरीत, रिमेंनियन ज्योमेट्री में आइसोमेट्री को रिमेंन वक्रता टेन्सर को संरक्षित करना चाहिए, जो इस प्रकार रीमैनियन मैनिफोल्ड का समष्टिीय अपरिवर्तनीय है। इसके अतिरिक्त, सिम्प्लेक्टिक मैनिफोल्ड पर प्रत्येक फलन H हैमिल्टनियन सदिश क्षेत्र XH को परिभाषित करता है, जो हैमिल्टनियन डिफ़ेओमोर्फिज़्म के पैरामीटर समूह को प्रतिपादित करता है। इससे यह ज्ञात होता है कि लक्षणात्मकताओं का समूह सदैव अधिक बड़ा होता है, और विशेष रूप से, अनंत-आयामी होता है। दूसरी ओर, रिमेंनियन मैनिफोल्ड की आइसोमेट्री का समूह सदैव (परिमित-आयामी) लाई समूह होता है। इसके अतिरिक्त, बड़े समरूपता समूहों के साथ रीमैनियन मैनिफोल्ड्स अधिक विशेष हैं, और सामान्य रीमैनियन मैनिफोल्ड में कोई असमरूपता नहीं है।

परिमाणीकरण

हिल्बर्ट रिक्त समष्टि पर सिम्प्लेक्टोमोर्फिज्म (सामान्य रूप से ħ-विरूपण के पश्चात) के समूह के परिमित-आयामी उपसमूहों के प्रतिनिधित्व को परिमाणीकरण कहा जाता है। जब लाइ समूह हैमिल्टनियन द्वारा परिभाषित किया जाता है, तो इसे ऊर्जा द्वारा परिमाणीकरण कहा जाता है। निरंतर रेखीय संचालकों के लाई बीजगणित से लाई बीजगणित तक संबंधित ऑपरेटर को कभी-कभी परिमाणीकरण भी कहा जाता है; इसे भौतिकी में देखने का अधिक सामान्य विधि है।

अर्नोल्ड अनुमान

व्लादिमीर अर्नोल्ड का प्रसिद्ध अनुमान हैमिल्टनियन सिम्प्लेक्टोमोर्फिज्म के लिए निश्चित बिंदु (गणित) की न्यूनतम संख्या से संबंधित है , इस स्तिथि में मोर्स सिद्धांत के अनुसार कॉम्पैक्ट सिंपलेक्टिक मैनिफोल्ड है (देखें [1])। अधिक त्रुटिहीन रूप से, अनुमान बताता है कि कम से कम उतने निश्चित बिंदु होते हैं, जितने महत्वपूर्ण बिंदुओं (गणित) पर सुचारू कार्य होता है, अवश्य होना चाहिए। इस अनुमान के कुछ संस्करण सिद्ध हुए हैं: जब अविक्षिप्त है, निश्चित बिंदुओं की संख्या नीचे से बेट्टी संख्याओं के योग से सीमित है (देखो,[2][3])। इस प्रसिद्ध अनुमान से प्रेरित सहानुभूति ज्यामिति में सबसे महत्वपूर्ण विकास फ्लोर होमोलॉजी का उत्पन्न है (देखें [4]), जिसका नाम एंड्रियास फ्लोर के नाम पर रखा गया है।

यह भी देखें

संदर्भ

  1. Arnolʹd, Vladimir (1978). Mathematical methods of classical mechanics. Graduate Texts in Mathematics. Vol. 60. New York: Springer-Verlag. doi:10.1007/978-1-4757-1693-1. ISBN 978-1-4757-1693-1.
  2. Fukaya, Kenji; Ono, Kaoru (September 1999). "Arnold conjecture and Gromov-Witten invariants". Topology. 38 (5): 933–1048. doi:10.1016/S0040-9383(98)00042-1.
  3. Liu, Gang; Tian, Gang (1998). "Floer homology and Arnold conjecture". Journal of Differential Geometry. 49 (1): 1–74. doi:10.4310/jdg/1214460936.
  4. Floer, Andreas (1989). "Symplectic fixed points and holomorphic spheres". Communications in Mathematical Physics. 120 (4): 575–611. doi:10.1007/BF01260388. S2CID 123345003.
Symplectomorphism groups