एनवेलप प्रमेय

From Vigyanwiki
Revision as of 15:33, 13 February 2023 by alpha>Indicwiki (Created page with "गणित और अर्थशास्त्र में, लिफाफा प्रमेय एक पैरामिट्रीकृत अनुकूलन...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित और अर्थशास्त्र में, लिफाफा प्रमेय एक पैरामिट्रीकृत अनुकूलन समस्या के मान फलन के अवकलनीयता गुणों के बारे में एक प्रमुख परिणाम है।[1] जैसा कि हम उद्देश्य के मापदंडों को बदलते हैं, लिफाफा प्रमेय से पता चलता है कि, एक निश्चित अर्थ में, उद्देश्य के अनुकूलक में परिवर्तन उद्देश्य समारोह में परिवर्तन के लिए योगदान नहीं करते हैं। लिफ़ाफ़ा प्रमेय अनुकूलन मॉडल के तुलनात्मक स्टैटिक्स के लिए एक महत्वपूर्ण उपकरण है।[2] लिफाफा शब्द मान फ़ंक्शन के ग्राफ़ का वर्णन करने से प्राप्त होता है, जो फ़ंक्शन के पैरामीटरयुक्त परिवार के ग्राफ़ के ऊपरी लिफाफे के रूप में होता है जो अनुकूलित हैं।

कथन

होने देना और वास्तविक-मूल्यवान निरंतर भिन्न-भिन्न कार्यों पर , कहाँ पसंद चर हैं और पैरामीटर हैं, और चुनने की समस्या पर विचार करें , किसी प्रदत्त के लिए , इतनी रूप में:

का विषय है और .

इस समस्या की Lagrangian अभिव्यक्ति द्वारा दिया गया है

कहाँ लैग्रेंज गुणक हैं। अब चलो और एक साथ ऐसा समाधान हो जो बाधाओं के अधीन उद्देश्य फलन f को अधिकतम करता है (और इसलिए Lagrangian के काठी बिंदु हैं),

और value function को परिभाषित करें

तब हमारे पास निम्नलिखित प्रमेय है।[3][4] प्रमेय: मान लीजिए और निरन्तर अवकलनीय हैं। तब

कहाँ .

मनमानी पसंद सेट के लिए

होने देना पसंद सेट को निरूपित करें और प्रासंगिक पैरामीटर होने दें . दे पैरामिट्रीकृत उद्देश्य फ़ंक्शन, मान फ़ंक्शन को निरूपित करें और इष्टतम विकल्प पत्राचार (सेट-वैल्यू फ़ंक्शन) द्वारा दिया गया है:

 

 

 

 

(1)

 

 

 

 

(2)

लिफाफा प्रमेय मान फ़ंक्शन के लिए पर्याप्त स्थितियों का वर्णन करता है  पैरामीटर में अलग-अलग होने के लिए  और इसके व्युत्पन्न का वर्णन करें

 

 

 

 

(3)

कहाँ के आंशिक व्युत्पन्न को दर्शाता है इसके संबंध में . अर्थात्, पैरामीटर के संबंध में मूल्य फ़ंक्शन का व्युत्पन्न उद्देश्य फ़ंक्शन के आंशिक व्युत्पन्न के संबंध में बराबर होता है अधिकतम स्तर को अपने इष्टतम स्तर पर स्थिर रखना।

पारंपरिक लिफाफा प्रमेय व्युत्पत्ति के लिए प्रथम-क्रम की स्थिति का उपयोग करते हैं (1), जिसके लिए आवश्यक है कि चुनाव सेट हो उत्तल और सामयिक संरचना, और उद्देश्य समारोह है चर में अवकलनीय हो . (तर्क यह है कि मैक्सिमाइज़र में परिवर्तनों का इष्टतम पर केवल दूसरा क्रम प्रभाव होता है और इसलिए इसे अनदेखा किया जा सकता है।) हालांकि, कई अनुप्रयोगों में जैसे कि अनुबंध सिद्धांत और खेल सिद्धांत में प्रोत्साहन बाधाओं का विश्लेषण, गैर-उत्तल उत्पादन समस्याएं, और मोनोटोन या मजबूत तुलनात्मक स्टैटिक्स, पसंद सेट और उद्देश्य कार्यों में आम तौर पर पारंपरिक लिफाफा प्रमेयों द्वारा आवश्यक टोपोलॉजिकल और उत्तल गुणों की कमी होती है।

पॉल मिलग्रोम और सेगल (2002) ने निरीक्षण किया कि पारंपरिक लिफाफा सूत्र मूल्य समारोह के किसी भी भिन्नता बिंदु पर मनमाना विकल्प सेट के साथ अनुकूलन समस्याओं के लिए है,[5]बशर्ते कि उद्देश्य फ़ंक्शन पैरामीटर में अलग-अलग हो:

प्रमेय 1: चलो और . अगर दोनों और मौजूद है, लिफाफा सूत्र (3) रखता है।

सबूत: समीकरण (1) का अर्थ है कि के लिए ,

मान्यताओं के तहत, प्रदर्शित अधिकतमकरण समस्या का उद्देश्य कार्य भिन्न होता है , और इस अधिकतमकरण के लिए प्रथम-क्रम की स्थिति बिल्कुल समीकरण है (3). Q.E.D.

जबकि सामान्य रूप से मूल्य फ़ंक्शन की भिन्नता के लिए मजबूत धारणाओं की आवश्यकता होती है, कई अनुप्रयोगों में कमजोर स्थितियां जैसे पूर्ण निरंतरता, भिन्नता लगभग हर जगह, या बाएं और दाएं-भिन्नता, पर्याप्त होती है। विशेष रूप से, मिलग्रोम और सहगल (2002) प्रमेय 2 के लिए पर्याप्त स्थिति प्रदान करता है बिल्कुल निरंतर होना,[5]जिसका अर्थ है कि यह लगभग हर जगह अलग-अलग है और इसके व्युत्पन्न के अभिन्न अंग के रूप में प्रदर्शित किया जा सकता है:

प्रमेय 2: मान लीजिए कि सभी के लिए नित्य है . यह भी मान लीजिए कि एक पूर्णांकीय फलन मौजूद है ऐसा है कि सभी के लिए और लगभग सभी . तब नितांत सतत है। मान लीजिए, इसके अलावा सभी के लिए अलग-अलग है , ओर वो लगभग हर जगह . फिर किसी भी चयन के लिए ,

 

 

 

 

(4)

प्रमाण: प्रयोग करना (1)(1), किसी भी के लिए निरीक्षण करें साथ ,

इसका अर्थ यह है कि नितांत सतत है। इसलिए, लगभग हर जगह अलग-अलग है, और उपयोग कर रहा है (3) पैदावार (4). Q.E.D.

यह परिणाम आम गलत धारणा को दूर करता है कि मूल्य समारोह के अच्छे व्यवहार के लिए अधिकतम अधिकतम के अच्छे व्यवहार की आवश्यकता होती है। प्रमेय 2 मान फलन की पूर्ण निरंतरता सुनिश्चित करता है भले ही अधिकतमक असंतत हो। इसी तरह, मिल्ग्रोम और सेगल (2002) प्रमेय 3 का अर्थ है कि मूल्य समारोह अलग-अलग होना चाहिए और इसलिए लिफाफा सूत्र को संतुष्ट करें (3) जब परिवार पर समान अवकलनीय है और एकल-मूल्यवान और निरंतर है , भले ही अधिकतमकर्ता अवकलनीय न हो (उदाहरण के लिए, अगर असमानता बाधाओं के एक सेट द्वारा वर्णित है और बाध्यकारी बाधाओं के सेट में परिवर्तन होता है ).[5]


अनुप्रयोग

निर्माता सिद्धांत के लिए आवेदन

प्रमेय 1 का तात्पर्य लाभ फलन के किसी भी अवकलनीयता बिंदु पर होटलिंग लेम्मा से है, और प्रमेय 2 का तात्पर्य उत्पादक अधिशेष सूत्र से है। औपचारिक रूप से, चलो उत्पादन सेट के साथ मूल्य-स्वीकारक फर्म के लाभ कार्य को निरूपित करें कीमतों का सामना करना पड़ रहा है , और जाने फर्म के आपूर्ति कार्य को निरूपित करें, अर्थात,

होने देना (अच्छे की कीमत ) और अन्य वस्तुओं की कीमतें निर्धारित करें . प्रमेय 1 को लागू करना पैदावार (फर्म की अच्छे की इष्टतम आपूर्ति ). प्रमेय 2 लागू करना (जिसकी मान्यताओं को सत्यापित किया जाता है एक सीमित अंतराल तक सीमित है) उपज

यानी निर्माता अधिशेष अच्छे के लिए फर्म के आपूर्ति वक्र के तहत एकीकृत करके प्राप्त किया जा सकता है .

तंत्र डिजाइन और नीलामी सिद्धांत के लिए आवेदन

एक ऐसे एजेंट पर विचार करें जिसकी उपयोगिता कार्य करती है परिणामों से अधिक उसके प्रकार पर निर्भर करता है . होने देना विभिन्न संदेशों को भेजकर तंत्र में एजेंट द्वारा प्राप्त किए जा सकने वाले संभावित परिणामों के मेनू का प्रतिनिधित्व करता है। एजेंट की संतुलन उपयोगिता तंत्र में तब (1), और सेट द्वारा दिया जाता है तंत्र के संतुलन के परिणाम (2) द्वारा दिए गए हैं। कोई चयन तंत्र द्वारा कार्यान्वित एक विकल्प नियम है। मान लीजिए कि एजेंट की उपयोगिता कार्य करती है अवकलनीय है और बिल्कुल सतत है सभी के लिए , ओर वो पर समाकलनीय है . तब प्रमेय 2 का अर्थ है कि एजेंट की संतुलन उपयोगिता किसी दिए गए विकल्प नियम को लागू करने वाले किसी भी तंत्र में अभिन्न स्थिति (4) को पूरा करना चाहिए।

निरंतर प्रकार के रिक्त स्थान के साथ तंत्र डिजाइन समस्याओं के विश्लेषण में अभिन्न स्थिति (4) एक महत्वपूर्ण कदम है। विशेष रूप से, मायर्सन (1981) के एकल-आइटम नीलामियों के विश्लेषण में, एक बोली लगाने वाले के दृष्टिकोण से परिणाम को इस रूप में वर्णित किया जा सकता है: , कहाँ वस्तु प्राप्त करने की बोलीदाता की संभावना है और उसका अपेक्षित भुगतान है, और बोली लगाने वाले की अपेक्षित उपयोगिता रूप लेती है . इस मामले में दे रहे हैं बोली लगाने वाले के न्यूनतम संभव प्रकार को दर्शाता है, बोली लगाने वाले की संतुलन अपेक्षित उपयोगिता के लिए अभिन्न स्थिति (4)। रूप धारण कर लेता है

(इस समीकरण की व्याख्या उस फर्म के लिए निर्माता अधिशेष सूत्र के रूप में की जा सकती है, जिसकी उत्पादन तकनीक संख्या को परिवर्तित करने के लिए है संभावना में वस्तु को जीतने की नीलामी द्वारा परिभाषित किया जाता है और जो एक निश्चित मूल्य पर वस्तु को फिर से बेचता है ). बदले में यह स्थिति मायर्सन (1981) द्वारा मनाई गई राजस्व समानता को प्राप्त करती है: एक नीलामी में अपेक्षित राजस्व उत्पन्न होता है जिसमें बोलीदाताओं के पास स्वतंत्र निजी मूल्य होते हैं जो पूरी तरह से बोली लगाने वालों की संभावनाओं द्वारा निर्धारित होते हैं। सभी प्रकार के लिए वस्तु प्राप्त करने का साथ ही अपेक्षित अदायगी के द्वारा बोलीदाताओं के निम्नतम प्रकारों में से। अंत में, यह स्थिति Myerson's (1981) की इष्टतम नीलामियों में एक महत्वपूर्ण कदम है।[6]

लिफाफा प्रमेय के तंत्र डिजाइन के अन्य अनुप्रयोगों के लिए मिर्लीस (1971) देखें,[7] होल्मस्ट्रॉम (1979),[8] लॉफॉन्ट और मास्किन (1980),[9] रिले और सैमुएलसन (1981),[10] फडेनबर्ग और टिरोल (1991),[11] और विलियम्स (1999)।[12] जबकि इन लेखकों ने लिफाफा प्रमेय को (टुकड़े के अनुसार) लगातार अलग-अलग पसंद के नियमों या यहां तक ​​​​कि संकीर्ण वर्गों पर ध्यान देने के द्वारा व्युत्पन्न और शोषण किया, यह कभी-कभी एक विकल्प नियम को लागू करने के लिए इष्टतम हो सकता है जो टुकड़े-टुकड़े लगातार अलग-अलग नहीं होता है। (एक उदाहरण मायर्सन (1991) के अध्याय 6.5 में वर्णित रैखिक उपयोगिता वाली व्यापारिक समस्याओं का वर्ग है।[13]) ध्यान दें कि अभिन्न स्थिति (3) अभी भी इस सेटिंग में बनी हुई है और होल्मस्ट्रॉम के लेम्मा (होल्मस्ट्रॉम, 1979) जैसे महत्वपूर्ण परिणामों को दर्शाती है।[8]मायर्सन लेम्मा (मायर्सन, 1981),[6] राजस्व तुल्यता प्रमेय (नीलामी के लिए), ग्रीन-लॉफोंट-होल्मस्ट्रॉम प्रमेय (ग्रीन और लॉफोंट, 1979; होल्मस्ट्रॉम, 1979),[14][8]मायर्सन-सैटरथवेट अक्षमता प्रमेय (मायर्सन और सैटरथवेट, 1983),[15] जेहील-मोल्दोवानु असंभवता प्रमेय (जेहिल और मोल्दोवु, 2001),[16] मैकेफी-मैकमिलन कमजोर-कार्टेल्स प्रमेय (मैकएफी और मैकमिलन, 1992),[17] और वेबर मार्टिंगेल प्रमेय (वेबर, 1983),[18] आदि। इन अनुप्रयोगों का विवरण मिलग्रोम (2004) के अध्याय 3 में प्रदान किया गया है,[19] जो मुख्य रूप से लिफाफा प्रमेय और मांग सिद्धांत में अन्य परिचित तकनीकों और अवधारणाओं के आधार पर नीलामी और तंत्र डिजाइन विश्लेषण में एक सुरुचिपूर्ण और एकीकृत ढांचा प्रदान करता है।

बहुआयामी पैरामीटर रिक्त स्थान के लिए अनुप्रयोग

एक बहुआयामी पैरामीटर स्थान के लिए , प्रमेय 1 को मूल्य के आंशिक और दिशात्मक डेरिवेटिव पर लागू किया जा सकता है समारोह।[citation needed] यदि दोनों उद्देश्य कार्य करते हैं और मूल्य समारोह में (पूरी तरह से) अलग-अलग हैं , प्रमेय 1 का तात्पर्य उनके ग्रेडिएंट्स के लिए लिफाफा सूत्र से है:[citation needed] प्रत्येक के लिए . जबकि मान फलन की कुल अवकलनीयता सुनिश्चित करना आसान नहीं हो सकता है, प्रमेय 2 को अभी भी दो पैरामीटर मानों को जोड़ने वाले किसी भी सुगम पथ के साथ लागू किया जा सकता है और .[citation needed] अर्थात्, मान लीजिए कि कार्य करता है सभी के लिए अलग-अलग हैं साथ सभी के लिए . से सुगम मार्ग को एक अवकलनीय मानचित्रण द्वारा वर्णित है एक परिबद्ध व्युत्पन्न के साथ, जैसे कि और .[citation needed] प्रमेय 2 का अर्थ है कि ऐसे किसी भी सुगम पथ के लिए, मान फ़ंक्शन के परिवर्तन को आंशिक ग्रेडिएंट के रेखा अभिन्न के रूप में व्यक्त किया जा सकता है पथ के साथ उद्देश्य समारोह का:[citation needed]

विशेष रूप से, के लिए , यह स्थापित करता है कि चक्रीय पथ किसी भी सुगम पथ के साथ एकीकृत होता है शून्य होना चाहिए:[citation needed]

यह अभिन्नता की स्थिति बहुआयामी प्रकारों के साथ तंत्र डिजाइन में एक महत्वपूर्ण भूमिका निभाती है, किस प्रकार के चयन नियमों को बाधित करती है तंत्र-प्रेरित मेनू द्वारा बनाए रखा जा सकता है .[citation needed] निर्माता सिद्धांत के आवेदन में, के साथ फर्म के उत्पादन वेक्टर होने के नाते और मूल्य वेक्टर होने के नाते, , और पूर्णता की स्थिति कहती है कि कोई भी तर्कसंगत आपूर्ति कार्य संतुष्ट करना चाहिए

कब निरंतर अवकलनीय है, यह समाकलनीयता स्थिति प्रतिस्थापन मैट्रिक्स की समरूपता के समतुल्य है . (उपभोक्ता सिद्धांत में, व्यय न्यूनीकरण समस्या पर लागू एक ही तर्क स्लटस्की मैट्रिक्स की समरूपता उत्पन्न करता है।)

पैरामीटरीकृत बाधाओं के लिए आवेदन

अब मान लीजिए कि संभव सेट पैरामीटर पर निर्भर करता है, यानी,

कहाँ कुछ के लिए लगता है कि एक उत्तल सेट है, और अवतल हैं , और वहाँ मौजूद है ऐसा है कि सभी के लिए . इन धारणाओं के तहत, यह सर्वविदित है कि उपरोक्त विवश अनुकूलन कार्यक्रम को सैडल पॉइंट के रूप में प्रस्तुत किया जा सकता है। लैग्रैंगियन के लिए सैडल-पॉइंट समस्या , कहाँ लैग्रेंजियन को कम करने के लिए विरोधी द्वारा चुने गए लैग्रेंज मल्टीप्लायरों का वेक्टर है।[20][page needed][21][page needed] यह सैडल-पॉइंट समस्याओं के लिए मिल्ग्रोम और सेगल (2002, प्रमेय 4) एनवेलप प्रमेय के अनुप्रयोग की अनुमति देता है,[5] अतिरिक्त मान्यताओं के तहत एक मानक रैखिक स्थान में एक कॉम्पैक्ट सेट है, और में निरंतर हैं , और और में निरंतर हैं . विशेष रूप से, देना पैरामीटर मान के लिए Lagrangian के काठी बिंदु को निरूपित करें , प्रमेय का तात्पर्य है पूर्णतया निरंतर है और संतुष्ट करता है

विशेष मामले के लिए जिसमें से स्वतंत्र है , , और , सूत्र का तात्पर्य है ए.ई. के लिए . यानी लैग्रेंज गुणक बाधा अनुकूलन कार्यक्रम में इसकी छाया कीमत है।[21][page needed]


अन्य अनुप्रयोग

मिलग्रोम और सेगल (2002) प्रदर्शित करते हैं कि लिफाफा प्रमेय का सामान्यीकृत संस्करण उत्तल प्रोग्रामिंग, निरंतर अनुकूलन समस्याओं, सैडल-पॉइंट समस्याओं और इष्टतम रोक समस्याओं पर भी लागू किया जा सकता है।[5]


यह भी देखें

  • अधिकतम प्रमेय
  • डांस्किन प्रमेय
  • होटलिंग की लेम्मा
  • ले चेटेलियर का सिद्धांत
  • रॉय की पहचान
  • मूल्य समारोह


संदर्भ

  1. Border, Kim C. (2019). "Miscellaneous Notes on Optimization Theory and Related Topics". Lecture Notes. California Institute of Technology: 154.
  2. Carter, Michael (2001). Foundations of Mathematical Economics. Cambridge: MIT Press. pp. 603–609. ISBN 978-0-262-53192-4.
  3. Afriat, S. N. (1971). "Theory of Maxima and the Method of Lagrange". SIAM Journal on Applied Mathematics. 20 (3): 343–357. doi:10.1137/0120037.
  4. Takayama, Akira (1985). Mathematical Economics (Second ed.). New York: Cambridge University Press. pp. 137–138. ISBN 978-0-521-31498-5.
  5. 5.0 5.1 5.2 5.3 5.4 Milgrom, Paul; Ilya Segal (2002). "Envelope Theorems for Arbitrary Choice Sets". Econometrica. 70 (2): 583–601. CiteSeerX 10.1.1.217.4736. doi:10.1111/1468-0262.00296.
  6. 6.0 6.1 Myerson, Roger (1981). "Optimal Auction Design". Mathematics of Operations Research. 6: 58–73. doi:10.1287/moor.6.1.58. S2CID 12282691.
  7. Mirrlees, James (2002). "An Exploration in the Theory of Optimal Taxation". Review of Economic Studies. 38 (2): 175–208. doi:10.2307/2296779. JSTOR 2296779.
  8. 8.0 8.1 8.2 Holmstrom, Bengt (1979). "Groves Schemes on Restricted Domains". Econometrica. 47 (5): 1137–1144. doi:10.2307/1911954. JSTOR 1911954. S2CID 55414969.
  9. Laffont, Jean-Jacques; Eric Maskin (1980). "A Differentiable Approach to Dominant Strategy Mechanisms". Econometrica. 48 (6): 1507–1520. doi:10.2307/1912821. JSTOR 1912821.
  10. Riley, John G.; Samuelson, William S. (1981). "Optimal Auctions". American Economic Review. 71 (3): 381–392. JSTOR 1802786.
  11. Fudenberg, Drew; Tirole, Jean (1991). Game Theory. Cambridge: MIT Press. ISBN 0-262-06141-4.
  12. Williams, Steven (1999). "A Characterization of Efficient, Bayesian Incentive Compatible Mechanism". Economic Theory. 14: 155–180. doi:10.1007/s001990050286. S2CID 154378924.
  13. Myerson, Roger (1991). Game Theory. Cambridge: Harvard University Press. ISBN 0-674-34115-5.
  14. Green, J.; Laffont, J. J. (1979). Incentives in Public Decision Making. Amsterdam: North-Holland. ISBN 0-444-85144-5.
  15. Myerson, R.; M. Satterthwaite (1983). "Efficient Mechanisms for Bilateral Trading" (PDF). Journal of Economic Theory. 29 (2): 265–281. doi:10.1016/0022-0531(83)90048-0. hdl:10419/220829.
  16. Jehiel, Philippe; Moldovanu, Benny (2001). "Efficient Design with Interdependent Valuations". Econometrica. 69 (5): 1237–1259. CiteSeerX 10.1.1.23.7639. doi:10.1111/1468-0262.00240.
  17. McAfee, R. Preston; John McMillan (1992). "Bidding Rings". American Economic Review. 82 (3): 579–599. JSTOR 2117323.
  18. Weber, Robert (1983). "Multiple-Object Auctions" (PDF). In Engelbrecht-Wiggans, R.; Shubik, M.; Stark, R. M. (eds.). Auctions, Bidding, and Contracting: Uses and Theory. New York: New York University Press. pp. 165–191. ISBN 0-8147-7827-5.
  19. Milgrom, Paul (2004). Putting Auction Theory to Work. Cambridge University Press. ISBN 9780521536721.
  20. Luenberger, D. G. (1969). Optimization by Vector Space Methods. New York: John Wiley & Sons. ISBN 9780471181170.
  21. 21.0 21.1 Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press. ISBN 0691015864.