फलन क्षेत्र (योजना सिद्धांत)

From Vigyanwiki
Revision as of 16:13, 18 September 2023 by Abhishekkshukla (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

योजना के तर्कसंगत फलनों का KX शीफ (गणित) X मौलिक बीजगणितीय ज्यामिति में बीजगणितीय विविधता के फलन क्षेत्र की धारणा के योजना सिद्धांत का सामान्यीकरण है। विविधताओं की स्थितियों में, इस प्रकार का पुलिंदा प्रत्येक विवृत समुच्चय U को उस विवृत समुच्चय पर सभी तर्कसंगत फलन के वलय (गणित) से जोड़ता है, दूसरे शब्दों में, KX(U), U पर नियमित फलनों के अंशों का समुच्चय है। इसके नाम के अतिरिक्त, KX सामान्य योजना X के लिए सदैव कोई क्षेत्र (गणित) नहीं देता है।

साधारण स्थितियां

सरलतम स्थितियों में, KX की परिभाषा सीधी है। यदि X (अलघुकरणीय) संबद्ध बीजगणितीय विविधता है और यदि U, X का विवृत उपसमुच्चय है, तो KX(U), U पर नियमित फलनों की वलय के अंशों का क्षेत्र होगा। चूंकि X संबद्ध है, U पर नियमित फलनों की वलय X के वैश्विक वर्गों का स्थानीयकरण होगा और इसके परिणामस्वरूप KX निरंतर शीफ होगा जिसका मान X के वैश्विक खंडों का अंश क्षेत्र है।

यदि X अभिन्न की शब्दावली है, किन्तु संबद्ध नहीं है, तो कोई भी गैर-खाली संबद्ध विवृत समुच्चय X में घना समुच्चय होगा। इसका अर्थ है कि U के बाहर कुछ भी रोचक करने के लिए नियमित फलन के लिए पर्याप्त जगह नहीं है और इसके परिणामस्वरूप U पर तर्कसंगत फलनों का व्यवहार X पर तर्कसंगत फलनों के व्यवहार को निर्धारित करना चाहिए। वास्तव में, किसी भी विवृत समुच्चय पर नियमित फलनों के छल्ले के अंश क्षेत्र समान होंगे, इसलिए हम परिभाषित करते हैं, किसी भी U, के लिए KX(U), X के किसी भी विवृत संबंध उप-समूचय पर नियमित फलनों के किसी भी वलय का सामान्य अंश क्षेत्र होना। वैकल्पिक रूप से, इस स्थितियों में सामान्य बिंदु के स्थानीय वलय होने के लिए फलन क्षेत्र को परिभाषित किया जा सकता है।

सामान्य मामला

समस्या तब प्रारंभ होती है जब X अभिन्न नहीं रह जाता है। फिर नियमित फलनों की वलय में शून्य विभाजक होना संभव है और परिणामस्वरूप अंश क्षेत्र उपस्तिथ नहीं है। सीधा समाधान अंश क्षेत्र को कुल भागफल वलय द्वारा प्रतिस्थापित करना है, अर्थात प्रत्येक तत्व को उलटना है जो शून्य भाजक नहीं है। दुर्भाग्य से, सामान्यतः कुल भागफल वलय शीफ की तुलना में प्रीशेफ का उत्पादन नहीं करता है। ग्रंथ सूची में सूचीबद्ध क्लेमन का प्रसिद्ध लेख ऐसा उदाहरण देता है।

सही समाधान इस प्रकार आगे बढ़ता है,

प्रत्येक विवृत समुच्चय U के लिए, मान लीजिए SUΓ(U, OX) में सभी तत्वों का समुच्चय हो, जो किसी डंठल OX,x में शून्य विभाजक नहीं हैं। बता दें कि KXpre प्रीशेफ हो जिसके खंड U पर वलय SU−1Γ(U, OX) का स्थानीयकरण हैं और जिनके प्रतिबंध मानचित्र स्थानीयकरण की सार्वभौमिक संपत्ति द्वारा OX के प्रतिबंध मानचित्रों से प्रेरित हैं। तब KX पूर्व शेफ KXpre से संबंधित शीफ है।

आगे की समस्याएँ

बार KX परिभाषित है, तो X के गुणों का अध्ययन करना संभव है जो केवल K पर निर्भर करते हैंX. यह द्विभाजित ज्यामिति का विषय है।

यदि X क्षेत्र k पर बीजगणितीय विविधता है, तो प्रत्येक विवृत समुच्चय U पर हमारे पास K के क्षेत्र प्रसार KX(U) है । U का आयाम इस क्षेत्र प्रसार की श्रेष्ठता की अंश के बराबर होगा। K के सभी परिमित पारगमन अंश क्षेत्र प्रसार कुछ प्रकार के तर्कसंगत फलन क्षेत्र के अनुरूप हैं।

बीजगणितीय वक्र C के विशेष स्थितियों में, अर्थात, आयाम 1, यह अनुसरण करता है कि C पर कोई भी दो गैर-निरंतर फलन F और G बहुपद समीकरण P(F, G) = 0 को संतुष्ट करते हैं।

ग्रन्थसूची