आप्लव केंद्री ऊंचाई
आप्लव केंद्री ऊंचाई (जीएम) तैरते हुए पिंड की प्रारंभिक स्थिरता का माप है। इसकी गणना जहाज के गुरुत्वाकर्षण के केंद्र और उसके आप्लव केंद्री के बीच की दूरी के रूप में की जाती है। बड़ी आप्लव केंद्री ऊंचाई का मतलब पलटने के खिलाफ अधिक प्रारंभिक स्थिरता है। आप्लव केंद्री ऊंचाई पतवार के लुढ़कने की प्राकृतिक आवृत्ति को भी प्रभावित करती है, जिसमें बहुत बड़ी आप्लव केंद्री ऊँचाई रोल की छोटी अवधि से जुड़ी होती है, जो यात्रियों के लिए असुविधाजनक होती है। इसलिए, पर्याप्त रूप से अत्यधिक नहीं, किन्तु उच्च आप्लव केंद्री ऊंचाई यात्री जहाजों के लिए आदर्श मानी जाती है।
आप्लव केंद्र
जब जहाज ऊँची एड़ी के जूते बग़ल में लुढ़कता है, जहाज की उछाल का केंद्र बाद में चलता है। यह जल रेखा के संबंध में ऊपर या नीचे भी जा सकता है। वह बिंदु जिस पर उछाल के एड़ी केंद्र के माध्यम से ऊर्ध्वाधर रेखा उछाल के मूल लंबवत केंद्र के माध्यम से रेखा को पार करती है, आप्लव केंद्र है। परिभाषा के अनुसार आप्लव केंद्र उछाल के केंद्र से सीधे ऊपर रहता है।
ऊपर दिए गए आरेख में दो बी सीधे और ऊँची स्थिति में जहाज के उछाल के केंद्र दिखाते हैं। आप्लव केंद्र, एम, को एड़ी के छोटे कोणों के लिए जहाज के सापेक्ष स्थिर माना जाता है, चूँकि, बड़े कोणों पर आप्लव केंद्र को अब निश्चित नहीं माना जा सकता है और जहाज की स्थिरता की गणना करने के लिए इसका वास्तविक स्थान खोजा जाना चाहिए।
इसकी गणना सूत्रों का उपयोग करके की जा सकती है।
जहां के बी उछाल का केंद्र है उलटना के ऊपर की ऊंचाई मीटर4 में घूर्णन अक्ष के चारों ओर जलपोत के क्षेत्र का दूसरा क्षण है और V मीटर में विस्थापन (द्रव) का आयतन है, के एम कील से आप्लव केंद्र की दूरी है।[1] स्थिर तैरने वाली वस्तुओं में प्राकृतिक लुढ़कनी आवृत्ति होती है, ठीक वसंत पर भार की तरह जहाँ आवृत्ति बढ़ जाती है क्योंकि वसंत कठोर हो जाता है। नाव में वसंत की कठोरता के बराबर दूरी जीएम आप्लव केंद्री ऊंचाई कहलाती है दो बिंदुओं के बीच की दूरी जी नाव के गुरुत्वाकर्षण का केंद्र और एम जो बिंदु है जिसे आप्लव केंद्र कहा जाता है।
आप्लव केंद्र नाव की जड़ता के पल और नाव की मात्रा के बीच के अनुपात से निर्धारित होता है। जड़ता प्रतिरोध परिमाणित विवरण है कि कैसे नाव की जलरेखा की चौड़ाई पलटने का प्रतिरोध करती है। चौड़ी और उथली, संकरी और गहरी पतवारों में उच्च अनुप्रस्थ आप्लव केंद्र कील के सापेक्ष) होते हैं और विपरीत में कम आप्लव केंद्र होते हैं, चरम विपरीत लॉग गोल तली वाली नाव के आकार का होता है।
गिट्टी, चौड़ी और उथली या संकरी और गहरी की उपेक्षा करने का अर्थ है कि जहाज लुढ़कने में बहुत तेज है और पलटने में बहुत कठिन है और कठोर है। लॉग के आकार का गोल तल इसे लुढ़कने में धीमा और पलटने और कोमल होने में आसान बनाता है।
जी गुरुत्वाकर्षण का केंद्र है। जीएम, नाव की कठोरता पैरामीटर, गुरुत्वाकर्षण के केंद्र को कम करके या पतवार के रूप को बदलकर और इस प्रकार विस्थापित मात्रा और जलयान के क्षेत्र के दूसरे क्षण को बदलकर दोनों को लंबा किया जा सकता है।
आदर्श नाव संतुलन बनाती है। बहुत धीमी रोल अवधि वाली बहुत कोमल नावों के पलटने का खतरा होता है, किन्तु यात्रियों के लिए आरामदायक होती हैं। चूँकि, उच्च आप्लव केंद्री ऊंचाई वाले जहाज़ कम रोल अवधि के साथ अत्यधिक स्थिर होते हैं जिसके परिणामस्वरूप डेक स्तर पर उच्च त्वरण होता है।
नौकायन नौकाओं, विशेष रूप से दौड़ नौकाओं को कठोर होने के लिए रचना किया गया है, जिसका अर्थ है कि द्रव्यमान के केंद्र और आप्लव केंद्र के बीच की दूरी बहुत बड़ी है ताकि पाल पर हवा के प्रभाव का विरोध किया जा सके। ऐसे जहाजों में लंबे मस्तूल की जड़ता के क्षण और पाल के वायुगतिकीय भिगोने के कारण लुढ़कनी गति असहज नहीं होती है।
विभिन्न केंद्र
उछाल का केंद्र पानी की मात्रा के द्रव्यमान के केंद्र में है जो पतवार (जहाज) को विस्थापित करता है। इस बिंदु को नौसेना वास्तुकला में 'बी' कहा जाता है।
जहाज के गुरुत्वाकर्षण के केंद्र को सामान्यतः बिंदु 'जी', 'सीजी' के रूप में दर्शाया जाता है। जब जहाज संतुलन पर होता है, तो उछाल का केंद्र जहाज के गुरुत्वाकर्षण के केंद्र के अनुरूप होता है।[2]आप्लव केंद्र वह बिंदु है जहां रेखाएं φ ± dφ की उत्प्लावकता के ऊर्ध्वगामी बल को (कोण φ पर) काटती हैं। जब जहाज लंबवत होता है, तो आप्लव केंद्र गुरुत्वाकर्षण के केंद्र के ऊपर स्थित होता है और इसलिए जहाज के लुढ़कने पर एड़ी के विपरीत दिशा में चलता है। इस दूरी को 'जीएम' के रूप में भी संक्षिप्त किया गया है। जैसे ही जहाज आगे बढ़ता है, गुरुत्वाकर्षण का केंद्र सामान्यतः जहाज के संबंध में स्थिर रहता है क्योंकि यह सिर्फ जहाज के वजन और कार्गो की स्थिति पर निर्भर करता है, किन्तु सतह का क्षेत्रफल बढ़ता है, जिससे BMφ बढ़ता है। स्थिर हल को रोल करने के लिए कार्य किया जाना चाहिए। इसे जल स्तर के संबंध में पतवार के द्रव्यमान के केंद्र को बढ़ाकर उछाल के केंद्र को कम करके या दोनों द्वारा संभावित ऊर्जा में परिवर्तित किया जाता है। यह संभावित ऊर्जा पतवार को ठीक करने के लिए जारी की जाएगी और स्थिर रवैया वहां होगा जहां इसका परिमाण सबसे कम होगा। यह संभावित और गतिज ऊर्जा की परस्पर क्रिया है जिसके परिणामस्वरूप जहाज में प्राकृतिक लुढ़कनी आवृत्ति होती है। छोटे कोणों के लिए, आप्लव केंद्र, Mφ, पार्श्व घटक के साथ चलता है, इसलिए यह सीधे द्रव्यमान के केंद्र पर नहीं होता है।[3]जहाज पर सही जोड़ी दो समान बलों के बीच क्षैतिज दूरी के समानुपाती होती है। ये गुरुत्वाकर्षण हैं जो द्रव्यमान के केंद्र में नीचे की ओर कार्य कर रहे हैं और समान परिमाण बल उत्प्लावकता के केंद्र के माध्यम से और इसके ऊपर आप्लव केंद्र के माध्यम से ऊपर की ओर कार्य कर रहे हैं। दाहिनी जोड़ी एड़ी के कोण के उन लोगों के से गुणा आप्लव केंद्री ऊंचाई के समानुपाती होती है, इसलिए स्थिरता के लिए आप्लव केंद्री ऊंचाई का महत्व। पतवार के अधिकारों के रूप में, काम तो द्रव्यमान के गिरने के केंद्र द्वारा किया जाता है, उछाल के बढ़ते केंद्र को समायोजित करने के लिए पानी गिरने से दोनों को सामान किया जाता है।
उदाहरण के लिए, जब पूरी तरह से बेलनाकार पतवार लुढ़कती है, तो उछाल का केंद्र उसी गहराई पर सिलेंडर की धुरी पर रहता है। चूँकि, यदि द्रव्यमान का केंद्र अक्ष के नीचे है, तो यह नीचे तरफ जाएगा और ऊपर उठेगा, जिससे संभावित ऊर्जा उत्पन्न होगी। इसके विपरीत यदि पूरी तरह से आयताकार अनुप्रस्थ काट वाले पतवार का जल रेखा पर द्रव्यमान का केंद्र होता है, तो द्रव्यमान का केंद्र समान ऊंचाई पर रहता है, किन्तु उछाल का केंद्र पतवार की एड़ी के रूप में नीचे चला जाता है, फिर से संभावित ऊर्जा का भंडारण करता है।
केंद्रों के लिए सामान्य संदर्भ चयन करते समय कील (के) की ढलना प्लेट प्लैंकिंग के भीतर लाइन को सामान्यतः चुना जाता है, इस प्रकार, संदर्भ ऊंचाई हैं।
- केबी - उछाल के केंद्र के लिए
- केजी - गुरुत्वाकर्षण के केंद्र के लिए
- केएमटी- अनुप्रस्थ आप्लव केंद्र के लिए
दाहिना हाथ
आप्लव केंद्री ऊंचाई एड़ी के छोटे कोण (0-15 डिग्री) पर पोत की स्थिरता के लिए अनुमान है। उस सीमा से परे पोत की स्थिरता का प्रभुत्व होता है, जिसे सही क्षण के रूप में जाना जाता है। पतवार की ज्यामिति के आधार पर नौसेना के वास्तुकारों को एड़ी के बढ़ते कोणों पर उछाल के केंद्र की गणना करनी चाहिए। वे तब इस कोण पर सही क्षण की गणना करते हैं, जो समीकरण का उपयोग करके निर्धारित किया जाता है।
- [2]एड़ी के छोटे कोणों पर
लिखने वाला हाथ क्षण के संबंध में कई महत्वपूर्ण कारक निर्धारित किए जाने चाहिए। इन्हें अधिकतम दाहिनी भुजा/आघूर्ण, डेक निमज्जन के बिंदु, बाढ़ के बहाव के कोण और गायब होने वाली स्थिरता के बिंदु के रूप में जाना जाता है। अधिकतम सही पल वह अधिकतम क्षण होता है जिसे पोत को पलटने के अतिरिक्त लागू किया जा सकता है। डेक विसर्जन का बिंदु वह कोण है जिस पर मुख्य डेक पहले समुद्र का सामना करेगा। इसी तरह, बाढ़ का कोण वह कोण है जिस पर पानी बर्तन में गहराई तक जा सकेगा। अंत में गायब होने वाली स्थिरता का बिंदु अस्थिर संतुलन का बिंदु है। इस कोण से कम कोई भी एड़ी पोत को स्वयं को सही करने की अनुमति देगी, जबकि इस कोण से अधिक कोई भी एड़ी नकारात्मक सही क्षण, चिकित्सा क्षण का कारण बनेगी और पोत को लुढ़कने के लिए मजबूर करेगी। जब पोत अपनी लुप्त होती स्थिरता के बिंदु के बराबर एड़ी तक पहुंचता है, तो कोई भी बाहरी बल पोत को पलटने का कारण बनेगा।
नौकायन जहाजों को मोटर चालित जहाजों की तुलना में उच्च स्तर की एड़ी के साथ संचालित करने के लिए रचना किया गया है और चरम कोणों पर सही क्षण का उच्च महत्व है।
मोनोहुल्ड नौकायन जहाजों को कम से कम 120 डिग्री एड़ी के लिए सकारात्मक दाहिने हाथ सकारात्मक स्थिरता की सीमा के लिए रचना किया जाना चाहिए।[4] चूँकि कई नौकायन नौकाओं की स्थिरता सीमा 90° पानी की सतह के समानांतर मस्तूल तक होती है। जैसा कि किसी विशेष डिग्री की सूची में पतवार का विस्थापन आनुपातिक नहीं है, गणना कठिन हो सकती है और इस अवधारणा को लगभग 1970 तक नौसेना वास्तुकला में औपचारिक रूप से प्रस्तुत नहीं किया गया था।[5]
स्थिरता
जीएम और लुढ़कनी अवधि
आप्लव केंद्र का जहाज के लुढ़कनी पीरियड से सीधा संबंध होता है। छोटे जीएम के साथ जहाज निविदा होगी - लंबी रोल अवधि होगी। अत्यधिक कम या नकारात्मक जीएम खराब मौसम में जहाज के पलटने के जोखिम को बढ़ाता है, उदाहरण के लिए एचएमएस कैप्टन (1869), वासा (जहाज)। यदि कार्गो या गिट्टी शिफ्ट होती है, जैसे कि कौगर ऐस के साथ, यह पोत को एड़ी के बड़े कोणों के लिए संभावित जोखिम में डालता है। कम जीएम वाला जहाज क्षतिग्रस्त होने और आंशिक रूप से बाढ़ आने पर कम सुरक्षित होता है क्योंकि निचली आप्लव केंद्री ऊंचाई कम सुरक्षा कारक छोड़ती है। इस कारण से, अंतर्राष्ट्रीय समुद्री संगठन जैसी समुद्री नियामक एजेंसियां समुद्री जहाजों के लिए न्यूनतम सुरक्षा मार्जिन निर्दिष्ट करती हैं। दूसरी ओर बड़ी आप्लव केंद्री ऊंचाई बर्तन को बहुत कठोर होने का कारण बन सकती है; अत्यधिक स्थिरता यात्रियों और चालक दल के लिए असुविधाजनक है। ऐसा इसलिए है क्योंकि कठोर पोत समुद्र के प्रति शीघ्रता से प्रतिक्रिया करता है क्योंकि यह लहर के ढलान को ग्रहण करने का प्रयास करता है। अत्यधिक कठोर पोत कम अवधि और उच्च आयाम के साथ लुढ़कता है जिसके परिणामस्वरूप उच्च कोणीय त्वरण होता है। यह जहाज और कार्गो को नुकसान के जोखिम को बढ़ाता है और विशेष परिस्थितियों में अत्यधिक रोल का कारण बन सकता है जहां लहर की ईजेन अवधि जहाज रोल की ईजेन अवधि के साथ मेल खाती है। पर्याप्त आकार के बिल्ज कील्स द्वारा रोल डैम्पिंग से जोखिम कम होगा। इस गतिशील स्थिरता प्रभाव के मानदंड विकसित किए जाने बाकी हैं। इसके विपरीत, कोमल जहाज लहरों की गति से पीछे रह जाता है और कम आयामों पर लुढ़कने लगता है। यात्री जहाज में सामान्यतः आराम के लिए लंबी लुढ़कनी अवधि होती है, शायद 12 सेकंड जबकि टैंकर या मालवाही में 6 से 8 सेकंड की लुढ़कनी अवधि हो सकती है।
रोल की अवधि का अनुमान निम्नलिखित समीकरण से लगाया जा सकता है:[2]
क्षतिग्रस्त स्थिरता
यदि जहाज में बाढ़ आती है, तो स्थिरता का नुकसान केबी में वृद्धि, उछाल के केंद्र और जलपोत क्षेत्र के नुकसान के कारण होता है। इस प्रकार जड़त्व के जलयान क्षण का नुकसान होता है, जो आप्लव केंद्री ऊंचाई को कम करता है।[2]यह अतिरिक्त द्रव्यमान मुक्त बोर्ड पानी से डेक तक की दूरी और जहाज के बहाव के कोण एड़ी का न्यूनतम कोण जिस पर पानी पतवार में प्रवाहित हो सकेगा को भी कम करेगा। सकारात्मक स्थिरता की सीमा नीचे बाढ़ के कोण तक कम हो जाएगी जिसके परिणामस्वरूप लेखन लीवर कम हो जाएगा। जब पोत झुका हुआ होता है, बाढ़ की मात्रा में तरल पदार्थ नीचे की ओर चला जाएगा, गुरुत्वाकर्षण के केंद्र को सूची की ओर स्थानांतरित कर देगा और आगे बढ़ने वाले बल का विस्तार करेगा। इसे मुक्त सतह प्रभाव के रूप में जाना जाता है।
मुक्त सतह प्रभाव
टैंकों रिक्त स्थानों में जो आंशिक रूप से द्रव अर्ध-द्रव उदाहरण के लिए मछली, बर्फ, या अनाज से भरे होते हैं, क्योंकि टैंक तरल, अर्ध-द्रव की सतह को झुकाता है और स्तर रहता है। इसका परिणाम गुरुत्वाकर्षण के समग्र केंद्र के सापेक्ष टैंक अंतरिक्ष के गुरुत्वाकर्षण के केंद्र के विस्थापन में होता है। प्रभाव पानी की बड़ी सपाट ट्रे ले जाने के समान है। जब किनारे को इत्तला दी जाती है, तो पानी उस तरफ चला जाता है, जो टिप को और भी बढ़ा देता है।
इस प्रभाव का महत्व टैंक डिब्बे की चौड़ाई के घन के समानुपाती होता है, इसलिए क्षेत्र को तीन भागों में अलग करने वाले दो बफल्स तरल पदार्थ के गुरुत्वाकर्षण के केंद्र के विस्थापन को 9 के कारक से कम कर देंगे। यह महत्वपूर्ण है जहाज ईंधन टैंक , गिट्टी टैंक, टैंकर कार्गो टैंक और क्षतिग्रस्त जहाजों के बाढ़ आंशिक रूप से बाढ़ वाले डिब्बों में मुक्त सतह प्रभाव की और चिंताजनक विशेषता यह है कि सकारात्मक प्रतिक्रिया पाश स्थापित किया जा सकता है, जिसमें रोल की अवधि द्रव में गुरुत्वाकर्षण के केंद्र की गति की अवधि के लगभग बराबर होती है, जिसके परिणामस्वरूप प्रत्येक रोल में वृद्धि होती है परिमाण जब तक कि लूप टूट न जाए या जहाज डूब न जाए।
यह ऐतिहासिक कैपसाइज में महत्वपूर्ण रहा है, विशेष रूप से MS हेराल्ड ऑफ फ्री एंटरप्राइज और यह MS एस्तोनिया.
अनुप्रस्थ और अनुदैर्ध्य आप्लव केंद्री हाइट्स
जहाज के पिच के रूप में आप्लव केंद्र के आगे और पीछे की गति में भी समान विचार है। आप्लव केंद्र सामान्यतः अनुप्रस्थ एक एक करके दांए व बांए लुढ़कनी गति और लंबाई के अनुदैर्ध्य पिचिंग गति के लिए अलग से गणना की जाती है। इन्हें विभिन्न रूप में जाना जाता है और , जीएम (टी) और जीएम (एल), या कभी-कभी जीएमटी और जीएमएल।
तकनीकी रूप से पिच और रोल गति के किसी भी संयोजन के लिए अलग-अलग आप्लव केंद्री ऊंचाइयां होती हैं, जो विचाराधीन रोटेशन के अक्ष के चारों ओर जहाज के जलपोत क्षेत्र की जड़ता के क्षण पर निर्भर करती हैं, किन्तु वे सामान्यतः केवल गणना की जाती हैं और विशिष्ट मूल्यों के रूप में बताई जाती हैं। शुद्ध पिच और रोल गति को सीमित करना।
नाप
आप्लव केंद्री ऊंचाई सामान्यतः जहाज के डिजाइन के दौरान अनुमानित होती है किन्तु बार बनने के बाद झुकाव परीक्षण द्वारा निर्धारित किया जा सकता है। यह तब भी किया जा सकता है जब कोई जहाज या अपतटीय फ़्लोटिंग प्लेटफ़ॉर्म सेवा में हो। इसकी गणना संरचना के आकार के आधार पर सैद्धांतिक सूत्रों द्वारा की जा सकती है।
झुकाव प्रयोग के दौरान प्राप्त कोण (एं) सीधे जीएम से संबंधित हैं। झुकाव प्रयोग के माध्यम से, गुरुत्वाकर्षण का 'जैसा निर्मित' केंद्र पाया जा सकता है; प्रयोग माप द्वारा जीएम और केएम प्राप्त करना (पेंडुलम स्विंग माप और ड्राफ्ट रीडिंग के माध्यम से), गुरुत्वाकर्षण केजी का केंद्र पाया जा सकता है। तो केएम और जीएम झुकाव के दौरान ज्ञात चर बन जाते हैं और केजी वांछित गणना चर है (केजी = केएम-जीएम)
यह भी देखें
संदर्भ
- ↑ Ship Stability. Kemp & Young. ISBN 0-85309-042-4
- ↑ 2.0 2.1 2.2 2.3 Comstock, John (1967). Principles of Naval Architecture. New York: Society of Naval Architects and Marine Engineers. p. 827. ISBN 9997462556.
- ↑ 3.0 3.1 Harland, John (1984). Seamanship in the age of sail. London: Conway Maritime Press. pp. 43. ISBN 0-85177-179-3.
- ↑ Rousmaniere, John, ed. (1987). Desirable and Undesirable Characteristics of Offshore Yachts. New York, London: W.W.Norton. pp. 310. ISBN 0-393-03311-2.
- ↑ U.S. Coast Guard Technical computer program support accessed 20 December 2006.