बायसिंग

From Vigyanwiki
Revision as of 20:48, 9 September 2022 by alpha>Indicwiki (Created page with "{{short description|Predetermined voltages or currents establishing proper operating conditions in electronic components}} {{about|biasing in '''electronics'''||Biasing (disam...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
एक ट्रांजिस्टर के वर्तमान और वोल्टेज गुणों का चित्रमय प्रतिनिधित्व; पूर्वाग्रह का चयन किया जाता है ताकि ऑपरेटिंग बिंदु विरूपण के बिना अधिकतम सिग्नल आयाम की अनुमति दे।

इलेक्ट्रानिक्स में, बायसिंग एक एम्पलीफायर में एक सक्रिय डिवाइस की प्रारंभिक परिचालन स्थितियों (वर्तमान और वोल्टेज) की स्थापना है। कई इलेक्ट्रॉनिक उपकरण, जैसे डायोड , ट्रांजिस्टर और वेक्यूम - ट्यूब , जिनका कार्य संकेत का प्रक्रमण समय-भिन्न (वैकल्पिक चालू) सिग्नल (इलेक्ट्रिकल इंजीनियरिंग) है, को भी सही ढंग से संचालित करने के लिए अपने टर्मिनलों पर एक स्थिर (डीसी) करंट या वोल्टेज की आवश्यकता होती है। यह करंट या वोल्टेज एक पूर्वाग्रह है। उन पर लागू एसी सिग्नल इस डीसी बायस करंट या वोल्टेज पर सुपरपोजिशन प्रमेय है।

एक डिवाइस का ऑपरेटिंग बिंदु , जिसे बायस पॉइंट, क्वाइसेन्ट पॉइंट या क्यू-पॉइंट के रूप में भी जाना जाता है, एक सक्रिय डिवाइस (एक ट्रांजिस्टर या वैक्यूम ट्यूब) के निर्दिष्ट टर्मिनल पर डीसी वोल्टेज या करंट होता है, जिसमें कोई इनपुट सिग्नल नहीं होता है। बायस सर्किट डिवाइस के सर्किट का एक हिस्सा है जो इस स्थिर करंट या वोल्टेज की आपूर्ति करता है।

अवलोकन

इलेक्ट्रॉनिक्स में, 'बायसिंग' आमतौर पर एक निश्चित डीसी वोल्टेज या इलेक्ट्रॉनिक घटक के टर्मिनल पर लागू होने वाले करंट को संदर्भित करता है जैसे कि एक सर्किट में डायोड, ट्रांजिस्टर या वैक्यूम ट्यूब जिसमें एसी सिग्नल भी मौजूद होते हैं, ताकि उचित संचालन की स्थिति स्थापित की जा सके। घटक के लिए। उदाहरण के लिए, एक इलेक्ट्रॉनिक एम्पलीफायर में ट्रांजिस्टर पर एक पूर्वाग्रह वोल्टेज लागू किया जाता है ताकि ट्रांजिस्टर अपने transconductance वक्र के एक विशेष क्षेत्र में संचालित हो सके। वैक्यूम ट्यूबों के लिए, ग्रिड पूर्वाग्रह वोल्टेज को अक्सर उसी कारण से ग्रिड इलेक्ट्रोड पर लागू किया जाता है।

चुंबकीय टेप रिकॉर्डिंग में, पूर्वाग्रह शब्द का उपयोग श्रव्य संकेत में जोड़े गए उच्च-आवृत्ति सिग्नल के लिए भी किया जाता है और टेप पर रिकॉर्डिंग की गुणवत्ता में सुधार करने के लिए रिकॉर्डिंग हेड पर लागू किया जाता है। इसे टेप पूर्वाग्रह कहा जाता है।

रैखिक परिपथों में महत्व

ट्रांजिस्टर से जुड़े लीनियर सर्किट को सही संचालन के लिए विशिष्ट डीसी वोल्टेज और धाराओं की आवश्यकता होती है, जिसे बायसिंग सर्किट का उपयोग करके प्राप्त किया जा सकता है। सावधानीपूर्वक पूर्वाग्रह की आवश्यकता के उदाहरण के रूप में, एक [[ ट्रांजिस्टर एम्पलीफायर ]] पर विचार करें। रैखिक एम्पलीफायरों में, एक छोटा इनपुट सिग्नल आकार में किसी भी बदलाव (कम विरूपण ) के बिना बड़ा आउटपुट सिग्नल देता है: इनपुट सिग्नल आउटपुट सिग्नल को क्यू-पॉइंट के बारे में इनपुट के सख्ती से आनुपातिक तरीके से ऊपर और नीचे बदलता है। हालाँकि, क्योंकि एक ट्रांजिस्टर के लिए इनपुट और आउटपुट के बीच संबंध इसकी पूरी ऑपरेटिंग रेंज में रैखिक नहीं है, इसलिए ट्रांजिस्टर एम्पलीफायर केवल रैखिक संचालन का अनुमान लगाता है। कम विरूपण के लिए, ट्रांजिस्टर को पक्षपाती होना चाहिए ताकि आउटपुट सिग्नल स्विंग ट्रांजिस्टर को अत्यंत अरेखीय संचालन के क्षेत्र में न चलाए। एक द्विध्रुवी जंक्शन ट्रांजिस्टर एम्पलीफायर के लिए, इस आवश्यकता का अर्थ है कि ट्रांजिस्टर को द्विध्रुवी जंक्शन ट्रांजिस्टर # संचालन के क्षेत्रों में रहना चाहिए, और कट-ऑफ या संतृप्ति से बचना चाहिए। वही आवश्यकता MOSFET एम्पलीफायर पर लागू होती है, हालांकि शब्दावली थोड़ी भिन्न होती है: MOSFET को MOSFET # मोड के संचालन में रहना चाहिए, और कटऑफ या ओमिक ऑपरेशन से बचना चाहिए।

द्विध्रुवी जंक्शन ट्रांजिस्टर

द्विध्रुवीय द्विध्रुवी जंक्शन ट्रांजिस्टर लिए, विभिन्न सर्किट तकनीकों का उपयोग करते हुए, क्यू-पॉइंट डीसी वोल्टेज और करंट की स्थापना करते हुए, ट्रांजिस्टर को सक्रिय मोड में चालू रखने के लिए पूर्वाग्रह बिंदु को चुना जाता है। एक छोटा संकेत तब पूर्वाग्रह के ऊपर लगाया जाता है। क्यू-पॉइंट आमतौर पर डीसी लोड लाइन (इलेक्ट्रॉनिक्स) के बीच में होता है, ताकि क्लिपिंग (सिग्नल प्रोसेसिंग) के कारण विरूपण के बिना अधिकतम उपलब्ध पीक-टू-पीक सिग्नल आयाम प्राप्त किया जा सके क्योंकि ट्रांजिस्टर संतृप्ति या कट-ऑफ तक पहुंच जाता है। . ऑपरेटिंग बिंदु को स्थापित करके एक निश्चित डीसी कलेक्टर वोल्टेज पर एक उपयुक्त डीसी कलेक्टर वर्तमान प्राप्त करने की प्रक्रिया को बायसिंग कहा जाता है।


वैक्यूम ट्यूब (थर्मिओनिक वाल्व)

ग्रिड बायस डीसी वोल्टेज है जो कैथोड के सापेक्ष एक वैक्यूम ट्यूब के नियंत्रण ग्रिड पर प्रदान किया जाता है ताकि ट्यूब की शून्य इनपुट सिग्नल या स्थिर स्थिति संचालन की स्थिति स्थापित की जा सके।[1][2]

  • एक विशिष्ट कक्षा ए एम्पलीफायर में #आदर्श, और क्लास ए और एबी1 ऑडियो पावर एम्पलीफायर ों के पावर चरण, डीसी पूर्वाग्रह वोल्टेज कैथोड क्षमता के सापेक्ष नकारात्मक है। तात्कालिक ग्रिड वोल्टेज (डीसी बायस और एसी इनपुट सिग्नल का योग) उस बिंदु तक नहीं पहुंचता है जहां से ग्रिड करंट शुरू होता है।
  • सामान्य प्रयोजन ट्यूबों का उपयोग करने वाले कक्षा बी एम्पलीफायर को अनुमानित प्लेट वर्तमान कटऑफ बिंदु पर नकारात्मक रूप से पक्षपाती किया जाता है। क्लास बी वैक्यूम ट्यूब एम्पलीफायरों को आमतौर पर ग्रिड करंट (क्लास बी .) के साथ संचालित किया जाता है2) बायस वोल्टेज स्रोत में कम प्रतिरोध होना चाहिए और ग्रिड करंट की आपूर्ति करने में सक्षम होना चाहिए।[3] जब कक्षा बी के लिए डिज़ाइन की गई ट्यूबों को नियोजित किया जाता है, तो पूर्वाग्रह शून्य जितना छोटा हो सकता है।
  • कक्षा सी एम्पलीफायर को प्लेट करंट कटऑफ से परे एक बिंदु पर नकारात्मक रूप से पक्षपाती किया जाता है। ग्रिड करंट इनपुट फ़्रीक्वेंसी चक्र के 180 डिग्री से काफी कम के दौरान होता है।

ग्रिड पूर्वाग्रह प्राप्त करने के कई तरीके हैं। पूर्वाग्रह विधियों के संयोजन एक ही ट्यूब पर इस्तेमाल किया जा सकता है।

  • फिक्स्ड बायस: डीसी ग्रिड क्षमता को ग्रिड के कनेक्शन द्वारा एक उपयुक्त प्रतिबाधा से निर्धारित किया जाता है जो डीसी को एक उपयुक्त वोल्टेज स्रोत से पारित करेगा।[2][4]* कैथोड पूर्वाग्रह (स्व-पूर्वाग्रह, स्वचालित बायस) - कैथोड के साथ श्रृंखला में एक प्रतिरोधक पर वोल्टेज ड्रॉप का उपयोग किया जाता है। ग्रिड सर्किट डीसी रिटर्न रोकनेवाला के दूसरे छोर से जुड़ा है, जिससे डीसी ग्रिड वोल्टेज कैथोड के सापेक्ष नकारात्मक हो जाता है।[4]* ग्रिड रिसाव पूर्वाग्रह: जब ग्रिड इनपुट आवृत्ति चक्र के भाग के दौरान सकारात्मक संचालित होता है, जैसे कि क्लास सी ऑपरेशन में, ग्रिड में इनपुट सिग्नल के कैपेसिटिव कपलिंग के संयोजन के साथ ग्रिड सर्किट में सुधार ग्रिड पर नकारात्मक डीसी वोल्टेज उत्पन्न करता है। . एक रोकनेवाला (ग्रिड रिसाव) युग्मन संधारित्र के निर्वहन की अनुमति देता है और डीसी ग्रिड करंट को पास करता है। परिणामी पूर्वाग्रह वोल्टेज डीसी ग्रिड वर्तमान और ग्रिड रिसाव प्रतिरोध के उत्पाद के बराबर है।[5][4][6]* ब्लीडर बायस: प्लेट वोल्टेज आपूर्ति में एक प्रतिरोध के एक हिस्से में वोल्टेज ड्रॉप ग्रिड पूर्वाग्रह को निर्धारित करता है। कैथोड प्रतिरोध पर एक नल से जुड़ा है। ग्रिड एक उपयुक्त प्रतिबाधा से जुड़ा है जो प्लेट वोल्टेज आपूर्ति के नकारात्मक पक्ष या उसी प्रतिरोध पर किसी अन्य नल को डीसी पथ प्रदान करता है।[1][7][8]* प्रारंभिक वेग पूर्वाग्रह (संपर्क पूर्वाग्रह): प्रारंभिक वेग ग्रिड करंट को ग्रिड-टू-कैथोड रोकनेवाला के माध्यम से पारित किया जाता है, आमतौर पर 1 से 10 megohms की सीमा में, कैथोड के सापेक्ष ग्रिड क्षमता को लगभग एक वोल्ट नकारात्मक बना देता है।[9][10][11] प्रारंभिक वेग पूर्वाग्रह केवल छोटे इनपुट सिग्नल वोल्टेज के लिए उपयोग किया जाता है।[11]


माइक्रोफ़ोन

इलेक्ट्रेट माइक्रोफोन तत्वों में आम तौर पर एक JFET | जंक्शन फील्ड-इफेक्ट ट्रांजिस्टर शामिल होता है, जो माइक्रोफोन के कुछ मीटर के भीतर अन्य इलेक्ट्रॉनिक्स को चलाने के लिए एक प्रतिबाधा कनवर्टर के रूप में होता है। इस JFET का ऑपरेटिंग करंट आमतौर पर 0.1 से 0.5 mA होता है और इसे अक्सर बायस के रूप में संदर्भित किया जाता है, जो प्रेत शक्ति इंटरफेस से अलग होता है जो पारंपरिक कंडेनसर माइक्रोफोन के बैकप्लेट को संचालित करने के लिए 48 वोल्ट की आपूर्ति करता है।[12]इलेक्ट्रेट माइक्रोफोन पूर्वाग्रह कभी-कभी एक अलग कंडक्टर पर आपूर्ति की जाती है।[13]


यह भी देखें

संदर्भ

  1. 1.0 1.1 Veley, Victor F. C. (1987). The Benchtop Electronics Reference Manual (1st ed.). New York: Tab Books. pp. 450–454.
  2. 2.0 2.1 Landee, Davis, Albrecht, Electronic Designers' Handbook, New York: McGraw-Hill, 1957, p. 2-27.
  3. Landee et al., 1957, p. 4-19.
  4. 4.0 4.1 4.2 Orr, William I., ed. (1962). The Radio Handbook (16th ed.). New Augusta Indiana: Editors and Engineers, LTD. pp. 266–267.
  5. Headquarters, Department of the Army (1952). C-W and A-M Radio Transmitters and Receivers. Washington, D.C.: United States Government Publishing Office. p. 97. TM 11-665.
  6. Everitt, William Littell (1937). Communication Engineering (2nd ed.). New York: McGraw-Hill. pp. 538-539.
  7. RCA Manufacturing Co. (1940). Receiving Tube Manual RC-14. Harrison, NJ: RCA. p. 38.
  8. Ghirardi, Alfred A. (1932). Radio Physics Course (2nd ed.). New York: Rinehart Books. pp. 505, 770–771.
  9. Giacoletto, Lawrence Joseph (1977). Electronics Designers' Handbook. New York: McGraw-Hill. p. 9-27.
  10. Tomer, Robert B. (1960). Getting the Most Out of Vacuum Tubes. Indianapolis: Howard W. Sams & Co./The Bobbs-Merrill Company. p. 28.
  11. 11.0 11.1 Landee et al., 1957, p. 2-28.
  12. "Phantom Power and Bias Voltage: Is There A Difference?". 2007-02-05. Archived from the original on 2009-09-08.
  13. IEC Standard 61938(subscription required)


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • प्रत्यावर्ती धारा

अग्रिम पठन

  • Boylestad, Robert L.; Nashelsky, Louis (2005). Electronic Devices and Circuit Theory. Prentice-Hall Career & Technology.
  • Patil, P. K.; Chitnis, M. M. (2005). Basic Electricity and Semiconductor Devices. Phadke Prakashan.
  • Sedra, Adel; Smith, Kenneth (2004). Microelectronic Circuits. Oxford University Press. ISBN 0-19-514251-9.