अव्युत्क्रमणीय फलन (सिंगुलर फंक्शन)

From Vigyanwiki
Revision as of 08:31, 21 September 2023 by alpha>Prashank Ranjan
वृत्त मानचित्र की घुमावदार संख्या का ग्राफ़ विलक्षण फ़ंक्शन का उदाहरण है।

गणित में, अंतराल (गणित) [ए, बी] पर वास्तविक-मूल्यवान फ़ंक्शन एफ को 'एकवचन' कहा जाता है यदि इसमें निम्नलिखित गुण हैं:

  • f [a, b] पर सतत कार्य है। (**)
  • माप (गणित) 0 का सेट N मौजूद है, जैसे कि N के बाहर सभी x के लिए व्युत्पन्न f(x) मौजूद है और शून्य है, यानी, f का व्युत्पन्न लगभग हर जगह गायब हो जाता है।
  • f [a, b] पर अचर है।

एकवचन फ़ंक्शन का मानक उदाहरण कैंटर फ़ंक्शन है, जिसे कभी-कभी शैतान की सीढ़ी भी कहा जाता है (यह शब्द सामान्य रूप से एकल कार्यों के लिए भी उपयोग किया जाता है)। हालाँकि, ऐसे अन्य कार्य भी हैं जिन्हें यह नाम दिया गया है। एक को वृत्त मानचित्र के रूप में परिभाषित किया गया है।

यदि सभी x ≤ a के लिए f(x) = 0 और सभी x ≥ b के लिए f(x) = 1 है, तो फ़ंक्शन को यादृच्छिक चर के लिए संचयी वितरण फ़ंक्शन का प्रतिनिधित्व करने के लिए लिया जा सकता है जो न तो असतत यादृच्छिक चर है (क्योंकि संभाव्यता प्रत्येक बिंदु के लिए शून्य है) और न ही बिल्कुल निरंतर यादृच्छिक चर (चूंकि संभाव्यता घनत्व फ़ंक्शन हर जगह शून्य है)।

उदाहरण के लिए, एकल कार्य ठोस और चुम्बकों में स्थानिक रूप से संशोधित चरणों या संरचनाओं के अनुक्रम के रूप में होते हैं, जिन्हें फ्रेनकेल-कोंटोरोवा मॉडल और एएनएनएनआई मॉडल के साथ-साथ कुछ गतिशील प्रणालियों में प्रोटोटाइपिक फैशन में वर्णित किया गया है। सबसे प्रसिद्ध रूप से, शायद, वे भिन्नात्मक क्वांटम हॉल प्रभाव के केंद्र में स्थित हैं।

एक विलक्षणता वाले कार्यों का जिक्र करते समय

सामान्य रूप से गणितीय विश्लेषण, या अधिक विशेष रूप से वास्तविक विश्लेषण या जटिल विश्लेषण या अंतर समीकरणों पर चर्चा करते समय, ऐसे फ़ंक्शन के लिए यह सामान्य है जिसमें गणितीय विलक्षणता होती है जिसे 'एकवचन फ़ंक्शन' के रूप में संदर्भित किया जाता है। यह उन कार्यों के संदर्भ में विशेष रूप से सच है जो बिंदु या सीमा पर अनंत तक विचरण करते हैं। उदाहरण के लिए, कोई कह सकता है, 1/x मूल बिंदु पर एकवचन बन जाता है, इसलिए 1/x विलक्षण फलन है।

वितरण (गणित) या सामान्यीकृत फ़ंक्शन विश्लेषण नामक विषय में विलक्षणताओं वाले कार्यों के साथ काम करने की उन्नत तकनीक विकसित की गई है। कमजोर व्युत्पन्न को परिभाषित किया गया है जो एकल कार्यों को आंशिक अंतर समीकरणों आदि में उपयोग करने की अनुमति देता है।

यह भी देखें

  • पूर्ण निरंतरता
  • गणितीय विलक्षणता
  • सामान्यीकृत कार्य
  • वितरण (गणित)
  • मिन्कोव्स्की का प्रश्न-चिह्न कार्य

संदर्भ

(**) This condition depends on the references [1]

  1. "Singular function", Encyclopedia of Mathematics, EMS Press, 2001 [1994]