पी-फ़ैक्टर

From Vigyanwiki
Revision as of 17:13, 20 September 2023 by alpha>Shivam
प्रोपेलर ब्लेड के हमले का कोण (बाएं) और विमान की पिच में परिवर्तन के साथ प्रोपेलर ब्लेड के हमले के कोण में परिवर्तन, असममित भार का प्रदर्शन (दाएं)

पी-फैक्टर, जिसे असममित ब्लेड प्रभाव और असममित डिस्क प्रभाव के रूप में भी जाना जाता है, गतिशील प्रोपेलर (विमान) द्वारा अनुभव की जाने वाली वायुगतिकीय घटना है,[1] जिसमें जब विमान आक्रमण के उच्च कोण पर होता है तो प्रोपेलर का थ्रस्ट केंद्र, केंद्र से भिन्न हो जाता है। थ्रस्ट के केंद्र के समष्टि में यह परिवर्तन विमान पर झटके का कारण बनता है, जिससे यह विमान को एक तरफ मोड़ देता है। याविंग प्रवृत्ति का प्रतिकार करने के लिए रडर इनपुट की आवश्यकता होती है।

कारण

Change of forces at increasing Angle of Attack
पी-फैक्टर, आक्रमण के बढ़ते कोण पर ऊपर और नीचे जाने वाले प्रोपेलर ब्लेड की सापेक्ष गति और थ्रस्ट में परिवर्तन

जब प्रोपेलर विमान समतल उड़ान में क्रूज़ स्पीड से उड़ रहा होता है, तो प्रोपेलर डिस्क प्रोपेलर के माध्यम से सापेक्ष वायु प्रवाह के लंबवत होती है। प्रत्येक प्रोपेलर ब्लेड समान कोण और गति पर हवा से संपर्क करता है, और इस प्रकार उत्पन्न थ्रस्ट पूर्ण प्रोपेलर में समान रूप से वितरित होता है।

चूँकि, कम गति पर, विमान सामान्यतः नोज-हाई ऐटिटूड में होगा, प्रोपेलर डिस्क क्षैतिज की ओर थोड़ा घुमाया जाएगा। इसके दो प्रभाव हैं, सर्वप्रथम, प्रोपेलर ब्लेड नीचे की स्थिति में अधिक आगे की ओर होंगे, और ऊपर की स्थिति में अधिक पीछे की ओर होंगे। प्रोपेलर ब्लेड नीचे और आगे की ओर (घड़ी की दिशा में घूमने के लिए, कॉकपिट से देखने पर एक बजे से छह बजे की स्थिति तक) आगे बढ़ने की गति अधिक होगी। इससे ब्लेड की हवा की गति बढ़ जाएगी, जिससे नीचे की ओर जाने वाला ब्लेड अधिक थ्रस्ट उत्पन करेगा। प्रोपेलर ब्लेड ऊपर और पीछे (सात बजे से बारह बजे की स्थिति तक) चलने पर आगे की गति कम हो जाएगी, इसलिए नीचे जाने वाले ब्लेड की अपेक्षा में हवा की गति कम होगी और थ्रस्ट कम होगा। यह विषमता बढ़े हुए थ्रस्ट के साथ प्रोपेलर डिस्क के थ्रस्ट के केंद्र को ब्लेड की ओर विस्थापित कर देती है।[2]दूसरे, प्रोपेलर डिस्क के झुकाव के कारण, नीचे की ओर जाने वाले ब्लेड के आक्रमण का कोण बढ़ जाता है, और ऊपर की ओर जाने वाले ब्लेड के आक्रमण का कोण कम हो जाता है। नीचे की ओर जाने वाले ब्लेड के आक्रमण का बड़ा कोण अधिक थ्रस्ट उत्पन करता है।[3]ध्यान दें कि नीचे की ओर जाने वाले ब्लेड की बढ़ी हुई आगे की गति वास्तव में इसके आक्रमण के कोण को कम कर देती है, किन्तु प्रोपेलर डिस्क के झुकाव के कारण आक्रमण के कोण में वृद्धि से इसको नियंत्रित किया जाता है। पूर्णतः, नीचे की ओर जाने वाले ब्लेड में वायुगति और आक्रमण का कोण अधिक होता है।[4]पी-फैक्टर आक्रमण के उच्च कोणों और उच्च शक्ति पर उदाहरण के लिए टेक-ऑफ के समय या धीमी उड़ान में, सबसे बड़ा होता है।[1][5]


प्रभाव

एकल इंजन प्रोपेलर विमान

यदि दक्षिणावर्त घूमने वाले प्रोपेलर का उपयोग किया जाता है (जैसा कि पायलट ने देखा) तो विमान ऊपर जाते समय बाईं ओर और नीचे आते समय दाईं ओर मुड़ने की प्रवृत्ति रखता है। इसका सामना विपरीत रडर से किया जाना चाहिए। दक्षिणावर्त घूमने वाला प्रोपेलर अब तक सबसे सामान्य है। पावर जोड़ते समय यॉ ध्यान देने योग्य है, चूँकि इसमें स्पाइरल स्लिपस्ट्रीम प्रभाव सहित अतिरिक्त कारण हैं। फिक्स्ड-विंग विमान में, प्रोपेलर के व्यक्तिगत ब्लेड के आक्रमण के कोण को समायोजित करने का सामान्यतः कोई उपाय नहीं होता है, इसलिए पायलट को पी-फैक्टर के साथ संघर्ष करना होगा और थ्रस्ट के परिवर्तन के प्रतिकार करने के लिए रडर का उपयोग करना होगा। जब विमान नीचे उतर रहा होता है तो ये बल विपरीत हो जाते हैं। प्रोप का उतरता हुआ दाहिना भाग अब आक्रमण के कम कोण के साथ थोड़ा पीछे की ओर बढ़ रहा है और प्रोप का आरोही बायाँ भाग अधिक आक्रमण कोण के साथ थोड़ा आगे की ओर बढ़ रहा है। यह असममित थ्रस्ट विमान को दाईं ओर खींचने का कारण बनता है और पायलट क्षतिपूर्ति के लिए बाएं रडर का उपयोग करता है। तथ्य यह है कि नीचे आते समय बाएँ-दाएँ खींचने की प्रवृत्ति विपरीत हो जाती है, यह प्रदर्शित करता है कि प्रोप के बाएँ और दाएँ पक्षों पर आक्रमण के कोण में अंतर सर्पिल स्लिपस्ट्रीम जैसे अन्य प्रभावों को प्रभावित करता है। अर्थात, यदि सर्पिल स्लिपस्ट्रीम प्रमुख फैक्टर होता है, तो विमान सदैव बाईं ओर खींचता है और नीचे आते समय दाईं ओर नहीं खींचता है।

पायलट इंजन की शक्ति या पिच कोण (आक्रमण के कोण) को परिवर्तित करते समय रडर की आवश्यकता का अनुमान लगाते हैं, और आवश्यकतानुसार बाएँ या दाएँ रडर का उपयोग करके क्षतिपूर्ति करते हैं।

टेल-व्हील विमान ग्राउंड-रोल के समय ट्राइसाइकिल लैंडिंग गियर वाले विमान की अपेक्षा में अधिक पी-फैक्टर प्रदर्शित करते हैं, क्योंकि ऊर्ध्वाधर में प्रोपेलर डिस्क का कोण अधिक होता है। प्रारंभिक ग्राउंड रोल के समय पी-फैक्टर नगण्य होता है, किन्तु आगे की गति बढ़ने पर ग्राउंड रोल के पश्चात के चरणों के समय स्पष्ट नोज-लेफ्ट प्रवृत्ति प्रदान करता है, विशेष रूप से यदि थ्रस्ट अक्ष को उड़ान पथ वेक्टर की ओर झुका हुआ रखा जाता है (उदाहरण के लिए रनवे के संपर्क में टेल-व्हील)। अपेक्षाकृत कम पावर सेटिंग (प्रोपेलर आरपीएम) को देखते हुए, लैंडिंग, फ्लेयर और रोलआउट के समय प्रभाव इतना स्पष्ट नहीं होता है। चूँकि, यदि रनवे के संपर्क में टेल-व्हील के साथ थ्रोटल को अकस्मात आगे बढ़ाया जाता है, तो इस नोज-लेफ्ट प्रवृत्ति की प्रत्याशा विवेकपूर्ण होती है।

मल्टी इंजन प्रोपेलर विमान

काउंटर-रोटेटिंग प्रोपेलर वाले बहु-इंजन विमानों के लिए, दोनों इंजनों के पी-फैक्टर निरस्त हो जाते हैं । चूँकि, यदि दोनों इंजन समान दिशा में घूमते हैं, या यदि इंजन विफल हो जाता है, तो पी-फैक्टर यॉ का कारण बनता है। एकल-इंजन विमान के जैसे, यह प्रभाव उन स्थितियों में सबसे अधिक होता है जहां विमान उच्च शक्ति पर होता है और आक्रमण का कोण उच्च होता है । विंगटिप की ओर नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन अन्य इंजन की अपेक्षा में अधिक यॉ और रोल उत्पन्न करता है, क्योंकि विमान के गुरुत्वाकर्षण के केंद्र के विषय में उस इंजन के थ्रस्ट केंद्र का आघूर्ण अधिक होता है। इस प्रकार, वायुमान के फुयूसलेज के समीप नीचे की ओर बढ़ने वाले ब्लेड वाला इंजन महत्वपूर्ण इंजन होता है, क्योंकि इसकी विफलता और दूसरे इंजन पर संबंधित निर्भरता के लिए पायलट द्वारा सीधी उड़ान बनाए रखने के लिए दूसरे इंजन के विफल होने की अपेक्षा में अधिक बड़े रडर विक्षेपण की आवश्यकता होती है। इसलिए पी-फैक्टर यह निर्धारित करता है कि कौन सा इंजन महत्वपूर्ण इंजन है।[6] अधिकांश विमानों के लिए (जिनमें दक्षिणावर्त घूमने वाले प्रोपेलर होते हैं), बायां इंजन महत्वपूर्ण इंजन होता है। काउंटर-रोटेटिंग प्रोपेलर (अर्थात एक ही दिशा में नहीं घूमने वाले) वाले विमान के लिए पी-फैक्टर आघूर्ण समान होते हैं और दोनों इंजन समान रूप से महत्वपूर्ण माने जाते हैं।

चित्र 1. दाहिने ओर से चलने वाला इंजन डेड इंजन की ओर अधिक तीव्र गति उत्पन्न करेगा, जिससे बाएं हाथ के इंजन की विफलता गंभीर हो जाएगी।

इंजनों के एक ही दिशा में घूमने से, पी-फैक्टर असममित संचालित उड़ान में विमान की न्यूनतम नियंत्रण गति (VMC) को प्रभावित करता है। प्रकाशित गति महत्वपूर्ण इंजन की विफलता के आधार पर निर्धारित की जाती है। किसी अन्य इंजन की विफलता के पश्चात वास्तविक न्यूनतम नियंत्रण गति कम (सुरक्षित) होती है।

हेलीकॉप्टर

आगे की उड़ान में हेलीकॉप्टरों के लिए पी-फैक्टर अत्यधिक महत्वपूर्ण है, क्योंकि प्रोपेलर डिस्क क्षैतिज है। आगे की ओर जाने वाले ब्लेड की वायुगति पीछे की ओर जाने वाले ब्लेड की अपेक्षा में अधिक होती है, इसलिए यह अधिक लिफ्ट उत्पन करता है, जिसे लिफ्ट की विषमता के रूप में जाना जाता है। रोटर डिस्क की लिफ्ट को संतुलित रखने के लिए हेलीकॉप्टर प्रत्येक ब्लेड के आक्रमण के कोण को स्वतंत्र रूप से नियंत्रित कर सकते हैं (आगे बढ़ने वाले ब्लेड पर आक्रमण के कोण को कम करते हुए, पीछे हटने वाले ब्लेड पर आक्रमण के कोण को बढ़ाते हुए)। यदि रोटर के ब्लेड स्वतंत्र रूप से अपने आक्रमण के कोण को परिवर्तित करने में असमर्थ थे, तो रोटर डिस्क के किनारे पर बढ़ती लिफ्ट के कारण, आगे की उड़ान के समय वामावर्त-घूर्णन रोटर ब्लेड वाला हेलीकॉप्टर बाईं ओर झुक जाता है।[7] जाइरोस्कोपिक प्रीसेशन इसे पीछे की ओर पिच में परिवर्तित करता है जिसे फ्लैप बैक के रूप में जाना जाता है।[8]कभी भी अधिक न होने वाली गति (VNE) हेलीकाप्टर का चयन आंशिक रूप से यह सुनिश्चित करने के लिए किया जाएगा कि पीछे की ओर चलने वाला ब्लेड रुक न जाए।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Willits, Pat, ed. (2004) [1997]. Guided Flight Discovery: Private Pilot. Abbot, Mike Kailey, Liz. Jeppesen Sanderson, Inc. p. 3-49. ISBN 0-88487-333-1.)
  2. "8 Yaw-Wise Torque Budget".
  3. Stowell, Rich (1996). आपातकालीन पैंतरेबाज़ी प्रशिक्षण. Rich Stowell Consulting. pp. 26–28. ISBN 1-879425-92-0.
  4. "P Factor?".
  5. Ramskill, Clay (June 2003). "प्रोप प्रभाव" (PDF). page 4. SMRCC. Retrieved 2009-04-27.
  6. Airplane Flying Handbook FAA-H-8083-3. Federal Aviation Administration. 2016. p. Chapter 12 Addendum.
  7. रोटरक्राफ्ट फ्लाइंग हैंडबुक. Federal Aviation Administration. 2019. p. 2–20.
  8. Watkinson, John: "The Art of the Helicopter" (2011), Pg 90.