बायोबैटरी

From Vigyanwiki
Revision as of 08:02, 12 August 2023 by alpha>Indicwiki (Created page with "{{Multiple issues| {{cleanup rewrite|the article reads like school essay, it should be founded on a secondary ref|date=April 2018}} {{more science citations needed|date=April...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

बायोबैटरी एक ऊर्जा भंडारण उपकरण है जो कार्बनिक यौगिकों द्वारा संचालित होता है। हालाँकि व्यावसायिक रूप से बेचे जाने से पहले बैटरियों का अभी भी परीक्षण किया जा रहा है, कई शोध दल और इंजीनियर इन बैटरियों के विकास को और आगे बढ़ाने के लिए काम कर रहे हैं।

कामकाज

किसी भी बैटरी की तरह, बायो-बैटरी में एक एनोड, कैथोड, विभाजक (बिजली) और इलेक्ट्रोलाइट होता है, जिसमें प्रत्येक घटक दूसरे के ऊपर स्तरित होता है। एनोड और कैथोड बैटरी पर सकारात्मक और नकारात्मक क्षेत्र हैं जो इलेक्ट्रॉनों को अंदर और बाहर प्रवाहित करने की अनुमति देते हैं। एनोड बैटरी के शीर्ष पर स्थित होता है और कैथोड बैटरी के नीचे स्थित होता है। एनोड करंट को बैटरी के बाहर से प्रवाहित होने की अनुमति देते हैं, जबकि कैथोड करंट को बैटरी से बाहर प्रवाहित करने की अनुमति देते हैं।

एनोड और कैथोड के बीच इलेक्ट्रोलाइट होता है जिसमें एक विभाजक होता है। विभाजक का मुख्य कार्य विद्युत शॉर्ट सर्किट से बचने के लिए कैथोड और एनोड को अलग रखना है। समग्र रूप से यह प्रणाली, प्रोटॉन के प्रवाह की अनुमति देती है () और इलेक्ट्रॉन () जो अंततः बिजली उत्पन्न करता है।[1]

चीनी बैटरी

एनोड पर, चीनी का ऑक्सीकरण होता है, जिससे इलेक्ट्रॉन और प्रोटॉन दोनों उत्पन्न होते हैं।

ग्लूकोज → ग्लूकोनोलैक्टोन + 2H++2e

ये इलेक्ट्रॉन और प्रोटॉन अब संग्रहीत रासायनिक ऊर्जा की रिहाई में महत्वपूर्ण भूमिका निभाते हैं। कैथोड तक पहुंचने के लिए इलेक्ट्रॉन एनोड की सतह से एक बाहरी सर्किट के माध्यम से यात्रा करते हैं।[citation needed] दूसरी ओर, प्रोटॉन को विभाजक के माध्यम से इलेक्ट्रोलाइट के माध्यम से बैटरी के कैथोड पक्ष में स्थानांतरित किया जाता है।[1]

फिर कैथोड एक न्यूनीकरण अर्ध-प्रतिक्रिया करता है, जिसमें प्रोटॉन और इलेक्ट्रॉनों को ऑक्सीजन गैस के साथ जोड़कर पानी का उत्पादन किया जाता है।

2 4 एक्स++वह→2H2हे

जीवाणु संस्कृतियाँ

बिजली पैदा करने और भंडारण करने के लिए बैक्टीरिया का उपयोग करने में रुचि रही है। 2013 में, शोधकर्ताओं ने पाया कि ई. कोलाई जीवित बायोबैटरी के लिए एक अच्छा उम्मीदवार है क्योंकि इसका चयापचय ग्लूकोज को पर्याप्त रूप से ऊर्जा में परिवर्तित कर सकता है और इस प्रकार बिजली का उत्पादन कर सकता है।[2] विभिन्न जीनों के संयोजन के माध्यम से जीव के कुशल विद्युत उत्पादन को अनुकूलित करना संभव है। बैक्टीरियल बायो-बैटरियों में काफी क्षमता होती है कि वे केवल भंडारण करने के बजाय बिजली उत्पन्न कर सकती हैं और उनमें हाइड्रोक्लोरिक एसिड और सल्फ्यूरिक एसिड की तुलना में कम विषैले या संक्षारक पदार्थ हो सकते हैं।

रुचि का एक और जीवाणु एक नया है[when?] शीवेनेला वनिडेंसिस नामक जीवाणु की खोज की, जिसे इलेक्ट्रिक बैक्टीरिया कहा जाता है, जो विषाक्त मैंगनीज आयनों को कम कर सकता है और उन्हें भोजन में बदल सकता है।[3] इस प्रक्रिया में यह विद्युत धारा भी उत्पन्न करता है, और यह धारा जीवाणु उपांगों से बने छोटे तारों के माध्यम से प्रवाहित होती है जिन्हें जीवाणु नैनो-तार कहा जाता है। बैक्टीरिया और परस्पर जुड़े तारों का यह नेटवर्क विज्ञान के लिए पहले से ज्ञात किसी भी चीज़ के विपरीत एक विशाल जीवाणु बायोसर्किट बनाता है। बिजली पैदा करने के अलावा इसमें इलेक्ट्रिक चार्ज को स्टोर करने की भी क्षमता होती है।[4]

2015 में, शोधकर्ताओं ने दिखाया कि आयरन-ऑक्सीकरण और आयरन-कम करने वाले बैक्टीरिया मैग्नेटाइट के नैनोकणों पर इलेक्ट्रॉनों को लोड कर सकते हैं और इलेक्ट्रॉनों को डिस्चार्ज कर सकते हैं। उनके शोध में, आयरन-कम करने वाले और आयरन-ऑक्सीकरण करने वाले बैक्टीरिया सूक्ष्मजैविक संस्कृति संस्कृति | सह-संस्कृतियों को नकली दिन-रात चक्रों के संपर्क में लाया गया। प्रकाश के संपर्क में आने पर, फोटोट्रॉफिक Fe(II)-ऑक्सीडाइजिंग बैक्टीरिया, रोडोपस्यूडोमोनस पलुस्ट्रिस, मैग्नेटाइट से इलेक्ट्रॉनों को हटाने में सक्षम थे, जिससे इसका निर्वहन हुआ। अंधेरे परिस्थितियों में, अवायवीय Fe(III)-घटाने वाले जीवाणु जियोबैक्टर सल्फ्यूरेड्यूसेंस इस प्रक्रिया को उलटने में सक्षम थे, इलेक्ट्रॉनों को वापस मैग्नेटाइट पर डाल दिया जिससे यह रिचार्ज हो गया।[5][6] शोधकर्ताओं ने निष्कर्ष निकाला कि मैग्नेटाइट खनिजों में लौह आयन अलग-अलग पर्यावरणीय परिस्थितियों में इलेक्ट्रॉन सिंक और इलेक्ट्रॉन स्रोतों के रूप में जैव उपलब्धता रखते हैं, और प्राकृतिक रूप से होने वाली बैटरी के रूप में प्रभावी ढंग से कार्य कर सकते हैं।[5]

अनुप्रयोग

हालाँकि बायोबैटरियाँ व्यावसायिक बिक्री के लिए तैयार नहीं हैं, कई शोध दल और इंजीनियर इन बैटरियों के विकास को आगे बढ़ाने के लिए काम कर रहे हैं।[7]सोनी ने एक बायो बैटरी बनाई है जो 50 मेगावाट (मिलीवाट) की आउटपुट पावर देती है। यह आउटपुट लगभग एक एमपी3 प्लेयर को पावर देने के लिए पर्याप्त है।[1] आने वाले वर्षों में, सोनी बायो बैटरियों को बाज़ार में ले जाने की योजना बना रही है, जिसकी शुरुआत खिलौनों और उपकरणों से होगी जिनके लिए थोड़ी मात्रा में ऊर्जा की आवश्यकता होती है।[8]स्टैनफोर्ड और नॉर्थईस्टर्न जैसी कई अन्य अनुसंधान सुविधाएं भी ऊर्जा के वैकल्पिक स्रोत के रूप में जैव बैटरी पर शोध और प्रयोग करने की प्रक्रिया में हैं। चूंकि मानव रक्त में ग्लूकोज होता है, इसलिए कुछ अनुसंधान सुविधाएं जैव-बैटरी के चिकित्सीय लाभों और मानव शरीर में उनके संभावित कार्यों की ओर भी ध्यान दे रही हैं। हालाँकि इसका अभी और परीक्षण किया जाना बाकी है, जैव-बैटरी की सामग्री/उपकरण और चिकित्सा उपयोग दोनों के विषय पर शोध जारी है।

लाभ

Template:Promotional tone बायोबैटरी के फायदे निम्नलिखित हैं: • यह अन्य सभी बैटरियों की तुलना में तुरंत रिचार्ज की अनुमति देता है। • ये बैटरियां ग्लूकोज या चीनी की निरंतर आपूर्ति की मदद से खुद को चार्ज रखती हैं। उन्हें किसी बाहरी बिजली आपूर्ति की आवश्यकता नहीं है। • इसे आसानी से उपलब्ध ईंधन का उपयोग करके बनाया जा सकता है। • इसमें उच्च ऊर्जा घनत्व है। • इसे कमरे के तापमान पर आसानी से इस्तेमाल किया जा सकता है। • लचीले पेपर प्रोटोटाइप का उपयोग इम्प्लांटेबल पावर स्रोत के रूप में किया जाता है। • इस तथ्य के कारण कि वे गैर विषैले और गैर-ज्वलनशील ईंधन के स्रोत हैं, इनका उपयोग स्वच्छ वैकल्पिक पुन:नवीकरणीय ऊर्जा स्रोत के रूप में किया जाता है। • इनसे कोई विस्फोट नहीं होता. इसलिए इनका उपयोग सुरक्षित है। • इनसे कोई रिसाव नहीं होता।[7][better source needed]

नुकसान

लिथियम बैटरी जैसी पारंपरिक बैटरियों की तुलना में, बायो-बैटरी में अपनी अधिकांश ऊर्जा बरकरार रखने की संभावना कम होती है।[8][better source needed] जब इन बैटरियों के दीर्घकालिक उपयोग और ऊर्जा के भंडारण की बात आती है तो यह एक समस्या पैदा करता है। हालाँकि, शोधकर्ता बैटरी को वर्तमान बैटरियों और ऊर्जा के स्रोतों के लिए अधिक व्यावहारिक प्रतिस्थापन बनाने के लिए विकसित करना जारी रख रहे हैं।[8]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 Kannan, Filipek & Li (2009).
  2. Universitaet Bielefeld. "बिजली बनाने के लिए बैक्टीरिया बैटरी का उपयोग करना". ScienceDaily.
  3. Fessenden, Maris. "कुछ सूक्ष्मजीव बिजली खा सकते हैं और उसमें सांस ले सकते हैं". Smithsonian.
  4. Uría et al. (2011).
  5. 5.0 5.1 Byrne et al. (2015).
  6. "नए अध्ययन से पता चलता है कि बैक्टीरिया 'प्राकृतिक बैटरी' बनाने के लिए चुंबकीय कणों का उपयोग कर सकते हैं". 27 March 2015. Archived from the original on 28 December 2017. Retrieved 8 January 2017. Press release
  7. 7.0 7.1 "Bio-Battery: Clean, Renewable Power Source". CFD Research Corporation. Archived from the original on 2 November 2012. Retrieved 17 October 2012.
  8. 8.0 8.1 8.2 "सेलूलोज़-आधारित बैटरियाँ". Confederation of Swedish Enterprise.



उद्धृत कार्य

श्रेणी:ऊर्जा भंडारण