एकल-इलेक्ट्रॉन ट्रांजिस्टर

From Vigyanwiki
Revision as of 12:51, 11 August 2023 by alpha>Shikhav
मूलभूत सेट और उसके आंतरिक विद्युत घटकों का योजनाबद्ध

एकल-इलेक्ट्रॉन ट्रांजिस्टर (सेट ) कूलम्ब अवरोध प्रभाव पर आधारित संवेदनशील इलेक्ट्रॉनिक उपकरण है। इस उपकरण में इलेक्ट्रॉन स्रोत/नलिका के मध्य सुरंग जंक्शन से क्वांटम डॉट (प्रवाहकीय द्वीप) तक प्रवाहित होते हैं। इसके अतिरिक्त, द्वीप की विद्युत क्षमता को तीसरे इलेक्ट्रोड द्वारा ट्यून किया जा सकता है, जिसे गेट के रूप में जाना जाता है, जो कैपेसिटिव रूप से द्वीप से जुड़ा होता है। प्रवाहकीय द्वीप दो सुरंग जंक्शनों के मध्य सैंडविच है [1] जो कैपेसिटर, और , और प्रतिरोधक, और द्वारा समानांतर में बनाए गए हैं।

इतिहास

संघनित पदार्थ भौतिकी का नया उपक्षेत्र 1977 में प्रारंभ हुआ, जब डेविड थूलेस ने बताया कि जब चालक को अधिक छोटा बना दिया जाता है, तब उसका आकार उसके इलेक्ट्रॉनिक गुणों को प्रभावित करता है।[2] इसके पश्चात् 1980 के दशक में जांच की गई प्रणालियों के सबमाइक्रोन-आकार के आधार पर मेसोस्कोपिक भौतिकी अनुसंधान किया गया।[3] इस प्रकार एकल-इलेक्ट्रॉन ट्रांजिस्टर से संबंधित अनुसंधान प्रारंभ हुआ।

कूलम्ब अवरोध की घटना पर आधारित पहला एकल-इलेक्ट्रॉन ट्रांजिस्टर 1986 में सोवियत वैज्ञानिकों द्वारा सूची किया गया था के.के. लिखारेव [ru] और डी. वी. एवेरिन[4] कुछ वर्ष पश्चात् , अमेरिका में बेल लैब्स में टी. फुल्टन और जी. डोलन ने ऐसा उपकरण बनाया और प्रदर्शित किया कि ऐसा उपकरण कैसे काम करता है।[5] 1992 में मार्क ए. कास्टनर ने क्वांटम डॉट के ऊर्जा स्तरों के महत्व का प्रदर्शन किया गया था।[6] 1990 के दशक के अंत और 2000 के दशक की प्रारंभ में, रूसी भौतिक विज्ञानी एस है [7]


प्रासंगिकता

इंटरनेट ऑफ़ थिंग्स और स्वास्थ्य देखभाल अनुप्रयोगों की बढ़ती प्रासंगिकता इलेक्ट्रॉनिक उपकरण विद्युत् की व्यय पर अधिक प्रासंगिक प्रभाव डालती है। इस प्रयोजन के लिए, अल्ट्रा-लो विद्युत् की व्यय वर्तमान इलेक्ट्रॉनिक्स विश्व में मुख्य शोध विषयों में से है। दैनिक कार्य में विश्व में उपयोग किए जाने वाले छोटे कंप्यूटरों (जैसे मोबाइल फोन और घरेलू इलेक्ट्रॉनिक्स) की आश्चर्यजनक संख्या के लिए कार्यान्वित उपकरणों की महत्वपूर्ण विद्युत् व्यय स्तर की आवश्यकता होती है। इस परिदृश्य में सेट उच्च स्तर के उपकरण एकीकरण के साथ इस कम पावर श्रेणी को प्राप्त करने के लिए उपयुक्त कैंडिडेट के रूप में सामने आया है।

प्रयुक्त क्षेत्रों में सम्मिलित हैं: जोकी अति-संवेदनशील इलेक्ट्रोमीटर, एकल-इलेक्ट्रॉन स्पेक्ट्रोस्कोपी, डीसी वर्तमान मानक, तापमान मानक, अवरक्त विकिरण का पता लगाना, वोल्टेज अवस्था लॉजिक, चार्ज अवस्था लॉजिक, प्रोग्रामेबल एकल-इलेक्ट्रॉन ट्रांजिस्टर लॉजिक है।[8]

उपकरण

सिद्धांत

एकल-इलेक्ट्रॉन ट्रांजिस्टर का योजनाबद्ध आरेख
Left दाईं ओर: अवरुद्ध अवस्था (ऊपरी भाग) और संचारण अवस्था (निचला भाग) के लिए एकल-इलेक्ट्रॉन ट्रांजिस्टर में स्रोत, द्वीप और नलिका का ऊर्जा स्तर।

सेट में, क्षेत्र-प्रभाव ट्रांजिस्टर के समान तीन इलेक्ट्रोड होते हैं: स्रोत, नलिका और गेट ट्रांजिस्टर प्रकारों के मध्य मुख्य विधि अंतर चैनल अवधारणा में है। जबकि एफईटी में प्रयुक्त गेट वोल्टेज के साथ चैनल इंसुलेटेड से कंडक्टिव में परिवर्तित हो जाता है, एसईटी सदैव इंसुलेटेड रहता है। स्रोत और नलिका को दो क्वांटम टनलिंग के माध्यम से जोड़ा जाता है, जो धातु या अर्धचालक-आधारित क्वांटम डॉट (क्यूडी) द्वारा प्रथक किया जाता है,[9] द्वीप के नाम से भी जाना जाता है। जो की QD की विद्युत क्षमता को प्रतिरोध को परिवर्तित करने के लिए कैपेसिटिव रूप से युग्मित गेट इलेक्ट्रोड के साथ ट्यून किया जा सकता है, धनात्मक वोल्टेज लगाने से QD अवरुद्ध से गैर-अवरुद्ध स्थिति में परिवर्तित जाएगा और इलेक्ट्रॉन QD में सुरंग बनाना प्रारंभ कर देंगे। इस घटना को कूलम्ब अवरोध के रूप में जाना जाता है।


स्रोत से नाली तक धारा, , ओम के नियम का पालन करती है जब प्रयुक्त किया जाता है, और यह के समान होता है जहां प्रतिरोध, का मुख्य योगदान टनलिंग प्रभाव से आता है जब इलेक्ट्रॉन स्रोत से QD तक जाते हैं, और से नाली के लिए QD. QD के प्रतिरोध को नियंत्रित करता है, जो धारा को नियंत्रित करता है। यह बिल्कुल वैसा ही व्यवहार है जैसा नियमित फेट में होता है। चूँकि मैक्रोस्कोपिक मापदंड से दूर जाने पर, क्वांटम प्रभाव वर्तमान को प्रभावित करेगा।

अवरुद्ध अवस्था में सभी निचले ऊर्जा स्तर QD पर व्याप्त हैं और कोई भी रिक्त स्तर स्रोत (हरा 1) से उत्पन्न होने वाले इलेक्ट्रॉनों की टनलिंग सीमा के अंदर नहीं है। जब इलेक्ट्रॉन गैर-अवरुद्ध अवस्था में QD (2.) पर आता है तब यह सबसे कम उपलब्ध रिक्त ऊर्जा स्तर को भर देगा, जो QD के ऊर्जा अवरोध को बढ़ा देगा, इसे बार फिर से सुरंग दूरी से बाहर ले जाएगा। इलेक्ट्रॉन दूसरे सुरंग जंक्शन (3.) के माध्यम से सुरंग बनाना जारी रखेगा, जिसके पश्चात् यह बेलोचदार रूप से बिखर जाएगा और ड्रेन इलेक्ट्रोड फर्मी स्तर (4.) तक पहुंच जाएगा।

QD का ऊर्जा स्तर के पृथक्करण के साथ समान दूरी पर है। इससे द्वीप की स्व-क्षमता उत्पन्न होती है, जिसे इस प्रकार परिभाषित किया गया है: कूलम्ब अवरोध को प्राप्त करने के लिए, तीन मानदंडों को पूरा करने की आवश्यकता है:[10]

  1. बायस वोल्टेज द्वीप के स्व-समाई से विभाजित प्राथमिक चार्ज से कम होना चाहिए।
  2. स्रोत संपर्क में थर्मल ऊर्जा और द्वीप में थर्मल ऊर्जा, अथार्त चार्जिंग ऊर्जा से नीचे होनी चाहिए अन्यथा इलेक्ट्रॉन थर्मल उत्तेजना के माध्यम से QD को पारित करने में सक्षम होगा।
  3. सुरंग निर्माण प्रतिरोध, से अधिक होना चाहिए जो हाइजेनबर्ग के अनिश्चितता सिद्धांत से लिया गया है।[11]
  4. जहां सुरंग बनाने के समय से मेल खाता है और एसईटी के आंतरिक विद्युत घटकों के योजनाबद्ध चित्र में और के रूप में दिखाया गया है। बैरियर के माध्यम से इलेक्ट्रॉन सुरंग बनाने का समय () अन्य समय के मापदंड की तुलना में नगण्य रूप से छोटा माना जाता है। यह धारणा व्यावहारिक रुचि के एकल-इलेक्ट्रॉन उपकरणों में उपयोग की जाने वाली सुरंग बाधाओं के लिए मान्य है, जहां है

यदि प्रणाली के सभी सुरंग अवरोधों का प्रतिरोध क्वांटम प्रतिरोध से बहुत अधिक है, तब यह इलेक्ट्रॉनों को द्वीप तक सीमित रखने के लिए पर्याप्त है और उसके साथ अनेक सुरंग बनाने की घटनाओं अथार्त सह-टनलिंग से युक्त सुसंगत क्वांटम प्रक्रियाओं को अनदेखा करना सुरक्षित है।

सिद्धांत

QD के आसपास परावैद्युत का पृष्ठभूमि चार्ज . और द्वारा दर्शाया गया है जो दो सुरंग जंक्शनों के माध्यम से सुरंग बनाने वाले इलेक्ट्रॉनों की संख्या को दर्शाता है और इलेक्ट्रॉनों की कुल संख्या है। सुरंग जंक्शनों पर संबंधित शुल्कों को इस प्रकार लिखा जा सकता है:

जहां और सुरंग जंक्शनों की परजीवी रिसाव क्षमताएं हैं। बायस वोल्टेज को देखते हुए आप सुरंग जंक्शनों पर वोल्टेज को हल कर सकते हैं:

डबल-कनेक्टेड टनल जंक्शन की इलेक्ट्रोस्टैटिक ऊर्जा (जैसा कि योजनाबद्ध चित्र में है) होगी

पहले और दूसरे संक्रमण के माध्यम से इलेक्ट्रॉन टनलिंग के समय किया जाने वाला कार्य होगा:

मुक्त ऊर्जा की मानक परिभाषा इस प्रकार दी गई है:

जहाँ हम सेट की मुक्त ऊर्जा इस प्रकार पाते हैं:

आगे के विचार के लिए, दोनों सुरंग जंक्शनों पर शून्य तापमान पर मुक्त ऊर्जा में परिवर्तन को जानना आवश्यक है:

जब मुक्त ऊर्जा में परिवर्तन ऋणात्मक होगा तब सुरंग संक्रमण की संभावना अधिक होगी। उपरोक्त अभिव्यक्तियों में मुख्य शब्द का धनात्मक मान निर्धारित करता है जब तक कि प्रयुक्त वोल्टेज थ्रेशोल्ड मान से अधिक न हो, जो प्रणाली में सबसे छोटी क्षमता पर निर्भर करता है। सामान्य रूप से, सममित संक्रमण () के लिए अनावेशित QD ( और ) के लिए हमारे पास नियम है

(अर्थात, एकल संक्रमण की तुलना में थ्रेसहोल्ड वोल्टेज आधे से कम हो जाता है)।

जब प्रयुक्त वोल्टेज शून्य होता है, तब धातु इलेक्ट्रोड पर फर्मी स्तर ऊर्जा अंतराल के अंदर होगा। जब वोल्टेज थ्रेशोल्ड मान तक बढ़ जाता है, तब बाएं से दाएं टनलिंग होती है, और जब विपरीत वोल्टेज थ्रेशोल्ड स्तर से ऊपर बढ़ जाता है, तब दाएं से बाएं ओर टनलिंग होती है।

कूलम्ब अवरोध का अस्तित्व एसईटी की वर्तमान-वोल्टेज विशेषता में स्पष्ट रूप से दिखाई देता है (ग्राफ दिखाता है कि नलिका का प्रवाह गेट वोल्टेज पर कैसे निर्भर करता है)। कम गेट वोल्टेज (निरपेक्ष मूल्य में) पर, ड्रेन धारा शून्य होगा और जब वोल्टेज थ्रेशोल्ड से ऊपर बढ़ता है, तब संक्रमण ओमिक प्रतिरोध के समान व्यवहार करते हैं (दोनों संक्रमणों में समान पारगम्यता होती है) और धारा रैखिक रूप से बढ़ता है। ढांकता हुआ में पृष्ठभूमि चार्ज न केवल कम कर सकता है, बल्कि कूलम्ब अवरोध को पूर्णतः अवरुद्ध कर सकता है।

ऐसे स्थिति में जहां सुरंग अवरोधों की पारगम्यता बहुत भिन्न होती है सेट की चरणबद्ध I-V विशेषता उत्पन्न होती है। पहले संक्रमण के माध्यम से इलेक्ट्रॉन सुरंग बनाकर द्वीप तक जाता है और दूसरे संक्रमण के उच्च सुरंग प्रतिरोध के कारण उस पर बना रहता है। निश्चित अवधि के पश्चात् , इलेक्ट्रॉन दूसरे संक्रमण के माध्यम से सुरंग बनाता है, चूँकि यह प्रक्रिया पहले संक्रमण के माध्यम से दूसरे इलेक्ट्रॉन को द्वीप में सुरंग बनाने का कारण बनती है। इसलिए अधिकांश समय द्वीप पर से अधिक शुल्क लिया जाता है। पारगम्यता की व्युत्क्रम निर्भरता वाले स्थिति के लिए द्वीप निर्जन हो जाएगा और इसका प्रभार चरणबद्ध रूप से कम हो जाएगा। केवल अब हम सेट के संचालन के सिद्धांत को समझ सकते हैं। इसके समतुल्य परिपथ को QD के माध्यम से श्रृंखला में जुड़े दो सुरंग जंक्शनों के रूप में दर्शाया जा सकता है, सुरंग जंक्शनों के लंबवत और नियंत्रण इलेक्ट्रोड (गेट) जुड़ा हुआ है। गेट इलेक्ट्रोड नियंत्रण टैंक के माध्यम से द्वीप से जुड़ा हुआ है गेट इलेक्ट्रोड परावैद्युत में पृष्ठभूमि चार्ज को परिवर्तित सकता है, क्योंकि गेट अतिरिक्त रूप से द्वीप को ध्रुवीकृत करता है जिससे द्वीप चार्ज समान हो जाए

इस मान को ऊपर दिए गए सूत्रों में प्रतिस्थापित करने पर, हम संक्रमणों पर वोल्टेज के लिए नए मान पाते हैं:

इलेक्ट्रोस्टैटिक ऊर्जा में गेट कैपेसिटर पर संग्रहीत ऊर्जा सम्मिलित होनी चाहिए और गेट पर वोल्टेज द्वारा किए गए कार्य को मुक्त ऊर्जा में ध्यान में रखा जाना चाहिए:

शून्य तापमान पर, केवल ऋणात्मक मुक्त ऊर्जा वाले संक्रमण की अनुमति है: या इन स्थितियों का उपयोग समतल में स्थिरता के क्षेत्रों को खोजने के लिए किया जा सकता है।

गेट इलेक्ट्रोड पर बढ़ते वोल्टेज के साथ, जब आपूर्ति वोल्टेज को कूलम्ब अवरोध (अथार्त (i.s.) ) के वोल्टेज से नीचे बनाए रखा जाता है, तब ड्रेन आउटपुट करंट अवधि के साथ दोलन करेगा ये क्षेत्र स्थिरता के क्षेत्र में विफलताओं के अनुरूप हैं| टनलिंग करंट के दोलन समय के साथ होते हैं और दो श्रृंखला से जुड़े जंक्शनों में दोलनों की गेट नियंत्रण वोल्टेज में आवधिकता होती है। बढ़ते तापमान के साथ दोलनों का तापीय विस्तार अधिक सीमा तक बढ़ जाता है।

तापमान निर्भरता

एकल-इलेक्ट्रॉन ट्रांजिस्टर बनाते समय विभिन्न सामग्रियों का सफलतापूर्वक परीक्षण किया गया है। चूँकि तापमान उपलब्ध इलेक्ट्रॉनिक उपकरणों में कार्यान्वयन को सीमित करने वाला बड़ा कारक है। अधिकांश धातु-आधारित एसईटी केवल बेसीमा कम तापमान पर काम करते हैं।

नाइओबियम लीड और अल्युमीनियम द्वीप के साथ एकल-इलेक्ट्रॉन ट्रांजिस्टर

जैसा कि उपरोक्त सूची में बुलेट 2 में बताया गया है: कूलम्ब अवरोध को प्रभावित करने वाले थर्मल उतार-चढ़ाव को रोकने के लिए इलेक्ट्रोस्टैटिक चार्जिंग ऊर्जा से अधिक होनी चाहिए। इसका अर्थ यह है कि अधिकतम अनुमत द्वीप समाई तापमान के विपरीत आनुपातिक है और उपकरण को कमरे के तापमान पर चालू करने के लिए 1 एएफ से नीचे होना आवश्यक है।

द्वीप कैपेसिटेंस QD आकार का फलन है और कमरे के तापमान पर संचालन के लिए लक्ष्य करते समय 10 एनएम से छोटा QD व्यास उत्तम होता है। यह इसके स्थान में प्रतिलिपि प्रस्तुत करने योग्य उद्देश्य के कारण एकीकृत परिपथ की विनिर्माण क्षमता पर भारी प्रतिबंध लगाता है।

सीएमओएस अनुकूलता

हाइब्रिड सेट-फेट सर्किट

हाइब्रिड सेट -फ़ील्ड-इफ़ेक्ट ट्रांजिस्टर उपकरण उत्पन्न करके सेट के विद्युत प्रवाह के स्तर को उपलब्ध सीएमओएस विधि के साथ काम करने के लिए पर्याप्त बढ़ाया जा सकता है।[12][13]

यूरोपीय संघ ने 2016 में, परियोजना आईओएनएस4सेट (#688072) को वित्त पोषित किया[14] कमरे के तापमान पर संचालित सेट -फेट परिपथ की विनिर्माण क्षमता की खोज करता है। इस परियोजना का मुख्य लक्ष्य हाइब्रिड सेट-सीएमओएस आर्किटेक्चर के उपयोग को बढ़ाने के लिए बड़े मापदंड के संचालन के लिए सेट-विनिर्माण योग्यता प्रक्रिया-प्रवाह को डिजाइन करना है। कमरे के तापमान के संचालन को सुनिश्चित करने के लिए, 5 एनएम से कम व्यास के एकल बिंदुओं का निर्माण किया जाना चाहिए और कुछ नैनोमीटर की सुरंग दूरी के साथ स्रोत और नलिका के मध्य स्थित होना चाहिए।[15] अब तक कमरे के तापमान पर हाइब्रिड सेट -फेट परिपथ ऑपरेटिव के निर्माण के लिए कोई विश्वसनीय प्रक्रिया-प्रवाह नहीं है। इस संदर्भ में यह ईयू परियोजना लगभग 10 एनएम के स्तंभ आयामों का उपयोग करके सेट-फेट परिपथ के निर्माण का अधिक व्यवहार्य विधि खोजति है।[16]

यह भी देखें

संदर्भ

  1. Mahapatra, S.; Vaish, V.; Wasshuber, C.; Banerjee, K.; Ionescu, A.M. (2004). "हाइब्रिड सीएमओएस-सेट एनालॉग आईसी डिजाइन के लिए एकल इलेक्ट्रॉन ट्रांजिस्टर की विश्लेषणात्मक मॉडलिंग". IEEE Transactions on Electron Devices. 51 (11): 1772–1782. Bibcode:2004ITED...51.1772M. doi:10.1109/TED.2004.837369. ISSN 0018-9383. S2CID 15373278.
  2. Thouless, David J. (1977). "पतले तारों में अधिकतम धात्विक प्रतिरोध". Phys. Rev. Lett. 39 (18): 1167–1169. Bibcode:1977PhRvL..39.1167T. doi:10.1103/PhysRevLett.39.1167.
  3. Al'Tshuler, Boris L.; Lee, Patrick A. (1988). "अव्यवस्थित इलेक्ट्रॉनिक सिस्टम". Physics Today. 41 (12): 36–44. Bibcode:1988PhT....41l..36A. doi:10.1063/1.881139.
  4. Averin, D. V.; Likharev, K. K. (1986-02-01). "एकल-इलेक्ट्रॉन टनलिंग की कूलम्ब नाकाबंदी, और छोटे सुरंग जंक्शनों में सुसंगत दोलन". Journal of Low Temperature Physics (in English). 62 (3–4): 345–373. Bibcode:1986JLTP...62..345A. doi:10.1007/BF00683469. ISSN 0022-2291. S2CID 120841063.
  5. "एकल-इलेक्ट्रॉन ट्रांजिस्टर". Physics World. 1998-09-01. Retrieved 2019-09-17.
  6. Kastner, M. A. (1992-07-01). "एकल-इलेक्ट्रॉन ट्रांजिस्टर". Rev. Mod. Phys. 64 (3): 849–858. Bibcode:1992RvMP...64..849K. doi:10.1103/RevModPhys.64.849.
  7. Gubin, S. P.; Gulayev, Yu V.; Khomutov, G. B.; Kislov, V. V.; Kolesov, V. V.; Soldatov, E. S.; Sulaimankulov, K. S.; Trifonov, A. S. (2002). "Molecular clusters as building blocks for nanoelectronics: the first demonstration of a cluster single-electron tunnelling transistor at room temperature". Nanotechnology. 13 (2): 185–194. Bibcode:2002Nanot..13..185G. doi:10.1088/0957-4484/13/2/311..
  8. Kumar, O.; Kaur, M. (2010). "Single Electron Transistor: Applications & Problems". International Journal of VLSI Design & Communication Systems. 1 (4): 24–29. doi:10.5121/vlsic.2010.1403.
  9. Uchida, Ken; Matsuzawa, Kazuya; Koga, Junji; Ohba, Ryuji; Takagi, Shin-ichi; Toriumi, Akira (2000). "यथार्थवादी सेट सर्किट के डिजाइन और विश्लेषण के लिए विश्लेषणात्मक एकल-इलेक्ट्रॉन ट्रांजिस्टर (एसईटी) मॉडल". Japanese Journal of Applied Physics. 39 (Part 1, No. 4B): 2321–2324. Bibcode:2000JaJAP..39.2321U. doi:10.1143/JJAP.39.2321. ISSN 0021-4922.
  10. Poole, Charles P. Jr.; Owens, Frank J. (2003). Introduction to Nanotechnology. John Wiley & Sons Inc. ISBN 0-471-07935-9.
  11. Wasshuber, Christoph (1997). "2.5 Minimum Tunnel Resistance for Single Electron Charging". सिंगल-इलेक्ट्रॉन डिवाइस और सर्किट के बारे में (Ph.D.). Vienna University of Technology.
  12. Ionescu, A.M.; Mahapatra, S.; Pott, V. (2004). "कूलम्ब नाकाबंदी दोलनों और उच्च धारा ड्राइव के साथ हाइब्रिड सेटमोस आर्किटेक्चर". IEEE Electron Device Letters. 25 (6): 411–413. Bibcode:2004IEDL...25..411I. doi:10.1109/LED.2004.828558. ISSN 0741-3106. S2CID 42715316.
  13. Amat, Esteve; Bausells, Joan; Perez-Murano, Francesc (2017). "सेट-आधारित सर्किट में एकल-इलेक्ट्रॉन ट्रांजिस्टर पर परिवर्तनशीलता के प्रभाव की खोज". IEEE Transactions on Electron Devices. 64 (12): 5172–5180. Bibcode:2017ITED...64.5172A. doi:10.1109/TED.2017.2765003. ISSN 0018-9383. S2CID 22082690.
  14. "IONS4SET Website". Retrieved 2019-09-17.
  15. Klupfel, F. J.; Burenkov, A.; Lorenz, J. (2016). "Simulation of silicon-dot-based single-electron memory devices". 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). pp. 237–240. doi:10.1109/SISPAD.2016.7605191. ISBN 978-1-5090-0818-6. S2CID 15721282.
  16. Xu, Xiaomo; Heinig, Karl-Heinz; Möller, Wolfhard; Engelmann, Hans-Jürgen; Klingner, Nico; Gharbi, Ahmed; Tiron, Raluca; Johannes von Borany; Hlawacek, Gregor (2019). "Morphology modification of Si nanopillars under ion irradiation at elevated temperatures: Plastic deformation and controlled thinning to 10 nm". arXiv:1906.09975v2 [physics.app-ph].