बोरिंग (विनिर्माण)
मशीनिंग प्रकिया में, बोरिंग छेद को बड़ा करने की प्रक्रिया है जो पहले से ही एकल-बिंदु काटने वाले उपकरण (या ऐसे अनेक उपकरणों वाले बोरिंग हेड) के माध्यम से ड्रिल (या कास्टिंग) किया गया है, जैसे बंदूक को बोर करना बैरल या सिलेंडर (इंजन) करने में इसका उपयोग किया जाता है। बोरिंग का उपयोग छेद के व्यास की अधिक त्रुटिहीन बनाने के लिए किया जाता है और इसका उपयोग पतला छेद काटने के लिए किया जा सकता है। बोरिंग को टर्निंग के आंतरिक-व्यास समकक्ष के रूप में देखा जा सकता है। जो बाहरी व्यास को काटता है।
बोरिंग अनेक प्रकार की होती है। बोरिंग बार को दोनों सिरों से सहारा दिया जा सकता है (जो केवल तभी काम करता है जब उपस्थित छेद थ्रू होल हो), या इसे एक छोर पर सहारा दिया जा सकता है (जो थ्रू होल और ब्लाइंड छेद दोनों के लिए काम करता है)। लाइनबोरिंग (लाइन बोरिंग, लाइन-बोरिंग) का तात्पर्य पूर्व से है। बैकबोरिंग (बैक बोरिंग, बैक-बोरिंग) उपस्थित छेद के माध्यम से पहुंचने और फिर वर्कपीस के पीछे की ओर (मशीन हेडस्टॉक के सापेक्ष) बोरिंग करने की प्रक्रिया है।
इस तथ्य के कारण टूलींग डिज़ाइन पर लगाई गई सीमाओं के कारण कि वर्कपीस अधिकांशतः टूल को घेर लेती है, टूल होल्डिंग कठोरता में कमी, क्लीयरेंस कोण आवश्यकताओं में वृद्धि (समर्थन की मात्रा को सीमित करना) के संदर्भ में, बोरिंग स्वाभाविक रूप से मोड़ने की तुलना में कुछ अधिक चुनौतीपूर्ण है। अत्याधुनिक और परिणामी सतह (आकार, रूप, सतह खुरदरापन) के निरीक्षण की कठिनाई का सामना करना पड़ता है। यही कारण है कि बोरिंग को स्वयं में मशीनिंग अभ्यास के क्षेत्र के रूप में देखा जाता है। टर्निंग से भिन्न अपनी युक्तियों, युक्तियों, चुनौतियों और विशेषज्ञता के शरीर के साथ, इस तथ्य के पश्चात कि वे कुछ स्थितियों में समान हैं।
प्रथम बोरिंग मशीनी उपकरण का आविष्कार 1775 में जॉन विल्किंसन (उद्योगपति) द्वारा किया गया था।[1]
बोरिंग और टर्निंग में आंतरिक और बाहरी बेलनाकार ग्राइंडर में अपघर्षक समकक्ष होते हैं। प्रत्येक प्रक्रिया को किसी विशेष एप्लिकेशन की आवश्यकताओं और पैरामीटर मानों के आधार पर चुना जाता है।
प्रयुक्त मशीन उपकरण
बोरिंग प्रक्रिया को विभिन्न मशीन टूल्स पर निष्पादित किया जा सकता है, जिसमें (1) सामान्य प्रयोजन या सार्वभौमिक मशीनें, जैसे लेथ (/टर्निंग सेंटर) या मिलिंग मशीन (/मशीनिंग सेंटर), और (2) बोरिंग में विशेषज्ञता के लिए डिज़ाइन की गई मशीनें सम्मिलित की गयी हैं। प्राथमिक कार्य, जैसे जिग बोरर और बोरिंग मशीन या बोरिंग मिल, जिसमें ऊर्ध्वाधर बोरिंग मिल सम्मिलित हैं (वर्कपीस ऊर्ध्वाधर अक्ष के चारों ओर घूमता है. जबकि बोरिंग बार/हेड रैखिक रूप से चलता है, अनिवार्य रूप से ऊर्ध्वाधर खराद) और क्षैतिज बोरिंग मशीन (वर्कपीस मेज पर बैठता है, जबकि बोरिंग बार एक क्षैतिज अक्ष के चारों ओर घूमता है; अनिवार्य रूप से विशेष क्षैतिज मिलिंग मशीन)।
बोरिंग मिल और मिलिंग मशीन
आंतरिक सतह में लंबवत और क्षैतिज रूप से काटने के लिए टुकड़े और टूल बिट के मध्य के आयामों को दो अक्षों के विषय में बदला जा सकता है। इस प्रकार काटने का उपकरण सामान्यतः एकल बिंदु होता है, जो एम2 और एम3 उच्च गति स्टील या पी10 और पी01 शक्तिशाली कार्बाइड से बना होता है। इसके ऊपरी भाग अर्थात् सिर को घुमाकर पतला छेद भी बनाया जा सकता है।
बोरिंग मशीनें विभिन्न आकारों और शैलियों में आती हैं। छोटे वर्कपीस पर बोरिंग ऑपरेशन खराद पर किया जा सकता है, जबकि बड़े वर्कपीस को बोरिंग मिलों पर मशीनीकृत किया जाता है। वर्कपीस सामान्यतः 1 to 4 metres (3 ft 3 in to 13 ft 1 in) व्यास में होते हैं। किन्तु 20 m (66 ft) के समान बड़ा हो सकता है। विद्युत की आवश्यकतयें 200 horsepower (150 kW) तक ही हो सकती हैं। बोरों को ठंडा करने का काम बोरिंग बार के माध्यम से खोखले मार्ग के माध्यम से किया जाता है। जहां शीतलक स्वतंत्र रूप से प्रवाहित हो सकता है। बोरिंग के समय कंपन और कटकटाने की आवाज का प्रतिकार करने के लिए टंगस्टन-मिश्र धातु डिस्क को बार में सील कर दिया जाता है। इस प्रकार नियंत्रण प्रणालियाँ कंप्यूटर-आधारित हो सकती हैं, जिससे स्वचालन और बढ़ी हुई स्थिरता की अनुमति मिलती है।
चूँकि बोरिंग का अर्थ पहले से उपस्थित छिद्रों पर उत्पाद की सहनशक्ति को कम करना है, इसलिए अनेक डिज़ाइन संबंधी विचार क्रियान्वित होते हैं। सबसे पहले काटने के उपकरण के विक्षेपण के कारण बड़े लंबाई से बोर-व्यास को प्राथमिकता नहीं दी जाती है। इसके पश्चात, ब्लाइंड होल (वे छेद जो काम के टुकड़े की मोटाई को पार नहीं करते हैं) की तुलना में थ्रू होल को प्राथमिकता दी जाती है। बाधित आंतरिक कार्य करने वाली सतहों, जहां काटने के उपकरण और सतह का असंतुलित संपर्क होता है, से सामान्यतः बचा जाता है। बोरिंग बार मशीन की उभरी हुई भुजा है। जो काटने के उपकरण रखती है और इसकी धातु अत्यधिक कठोर होनी चाहिए।[2]
अभी बताए गए कारकों के कारण, डीप-होल ड्रिलिंग और डीप-होल बोरिंग स्वाभाविक रूप से अभ्यास के चुनौतीपूर्ण क्षेत्र हैं। जो विशेष टूलींग और विधियों की मांग करते हैं। फिर भी ऐसी प्रौद्योगिकियाँ विकसित की गई हैं। जो प्रभावशाली स्पष्टता के साथ गहरे छेद बनाती हैं। अधिकतर स्थितियों में उनमें अनेक काटने वाले बिंदु सम्मिलित होते हैं, जो बिल्कुल विपरीत होते हैं, जिनकी विक्षेपण शक्तियां एक-दूसरे को नष्ट कर देती हैं। इनमें सामान्यतः काटने वाले किनारों के पास छिद्रों तक उपकरण के माध्यम से दबाव में पंप किए गए काटने वाले तरल पदार्थ की डिलीवरी भी सम्मिलित होती है। बंदूक ड्रिल और तोप बोरिंग इसके उत्कृष्ट उदाहरण हैं। सबसे पहले अग्निशस्त्र और तोपखाने की बंदूक बैरल बनाने के लिए विकसित की गई, इन मशीनिंग विधियों का आज अनेक उद्योगों में विनिर्माण के लिए व्यापक उपयोग होता है।
सीएनसी नियंत्रण में बोरिंग के लिए विभिन्न निश्चित चक्र उपलब्ध हैं। ये प्रीप्रोग्राम्ड सबरूटीन्स हैं। जो उपकरण को कट, रिट्रेक्ट, एडवांस, फिर से कट, फिर रिट्रेक्ट, प्रारंभिक स्थिति में लौटने आदि के क्रमिक पासों के माध्यम से ले जाते हैं। इन्हें जी-कोड जैसे जी76, जी85, जी86, जी87, जी88, जी89 का उपयोग करके बुलाया जाता है और विशेष नियंत्रण बिल्डरों या मशीन टूल बिल्डरों के लिए विशिष्ट अन्य कम सामान्य कोड द्वारा भी इनका प्रयोग किया जाता है।
खराद
खराद बोरिंग[3] कटिंग ऑपरेशन है। जो वर्कपीस में उपस्थित उद्घाटन को बड़ा करके शंक्वाकार या बेलनाकार सतहों का उत्पादन करने के लिए एकल-बिंदु काटने वाले उपकरण या बोरिंग हेड का उपयोग करता है। गैर-टेपर्ड छिद्रों के लिए काटने का उपकरण घूर्णन की धुरी के समानांतर चलता है। इस प्रकार पतले छेदों के लिए, काटने का उपकरण घूर्णन की धुरी पर एक कोण पर चलता है। बोरिंग अनुप्रयोगों का उपयोग करके विभिन्न प्रकार के व्यासों में सरल से लेकर अत्यंत जटिल तक की ज्यामिति का उत्पादन किया जा सकता है। टर्निंग और ड्रिलिंग के पश्चात बोरिंग सबसे मूलभूत खराद कार्यों के समान है।
खराद बोरिंग के लिए सामान्यतः वर्कपीस को चक में पकड़कर घुमाने की आवश्यकता होती है। जैसे ही वर्कपीस को बार की नोक से जुड़े इन्सर्ट के साथ घुमाया जाता है। बोरिंग बार को उपस्थित छेद में डाला जाता है। जब काटने का उपकरण वर्कपीस से जुड़ता है, तो एक चिप बनती है। इस प्रकार उपयोग किए गए उपकरण के प्रकार, सामग्री और फ़ीड दर के आधार पर, चिप निरंतर या खंडित हो सकती है। उत्पादित सतह को बोर कहा जाता है।
खराद बोरिंग द्वारा निर्मित ज्यामिति सामान्यतः दो प्रकार की होती है: सीधे छेद और पतला छेद। यदि आवश्यक हो तो प्रत्येक आकार के छेद में अनेक व्यास भी जोड़े जा सकते हैं। टेपर का उत्पादन करने के लिए, उपकरण को घुमावदार सतह की धुरी पर एक कोण पर मिलाया जा सकता है या फ़ीड और अक्षीय गति दोनों समवर्ती हो सकते हैं। उपकरण को वर्कपीस घुमावदार धुरी के समानांतर घुमाकर सीधे छेद और काउंटर-बोर बनाए जाते हैं।
इसमें चार सबसे अधिक उपयोग किए जाने वाले वर्कहोल्डिंग उपकरण तीन-जबड़े चक, चार-जबड़े चक, कोलिट और खराद फेसप्लेट हैं। तीन-जबड़े वाले चक का उपयोग गोल या हेक्स वर्कपीस को पकड़ने के लिए किया जाता है क्योंकि कार्य स्वचालित रूप से केंद्रित होता है। इन चकों पर रनआउट को सीमाओं का सामना करना पड़ता है। लेट-मॉडल सीएनसी पर, यदि सभी स्थितियां उत्कृष्ट हों। तो यह बहुत कम हो सकता है, किन्तु परंपरागत रूप से यह सामान्यतः कम से कम .001-.003 इंच (0.025-0.075 मिमी) होता है। चार-जबड़े वाले चक का उपयोग या तो अनियमित आकृतियों को पकड़ने के लिए किया जाता है या गोल या हेक्स को बहुत अधिक कम रनआउट पर रखने के लिए किया जाता है (प्रत्येक टुकड़े को निर्देश देने और क्लैंप करने में समय व्यतीत होता है), इस प्रकार दोनों स्थितियों में प्रत्येक जबड़े पर इसकी स्वतंत्र कार्रवाई के कारण इसका प्रयोग अधिक होता है। फेस प्लेट का उपयोग अनियमित आकृतियों के लिए भी किया जाता है। कोलेट स्व-केंद्रित चकिंग को कम रनआउट के साथ जोड़ते हैं, किन्तु उनमें उच्च व्यय भी सम्मिलित होता है।
सीमाएँ
अधिकांशतः खराद बोरिंग अनुप्रयोगों के लिए, ±0.010 इंच (±0.25 मिमी) से अधिक सहनशक्ति सरलता से रखी जा सकती है। वहां से ±0.005 इंच (±0.13 मिमी) तक की सहनशक्ति सामान्यतः बिना किसी विशेष कठिनाई या खर्च के बनी रहती है। यहां तक कि गहरे गड्ढों में भी ±0.004 इंच (±0.10 मिमी) और ±0.001 इंच (±0.025 मिमी) के मध्य सहनशक्ति से चुनौती बढ़ने लगती है। इतनी सख्त सहनशक्ति वाले गहरे छिद्रों में, सीमित कारक अधिकांशतः आकार की अवरोध के समान ही ज्यामितीय आयाम और सहनशक्ति का अवरोध होता है। दूसरे शब्दों में, किसी भी व्यास माप बिंदु पर व्यास को .002 के अन्दर रखना सरल हो सकता है, किन्तु छेद की गहराई के 5 से अधिक व्यासों में .002 बाधा द्वारा सीमांकित क्षेत्र के अन्दर छेद की बेलनाकारता को पकड़ना कठिन हो सकता है ( गहराई को व्यास:गहराई के अनुपात के संदर्भ में मापा जाता है)। उच्चतम परिशुद्धता अनुप्रयोगों के लिए, सहनशक्ति सामान्यतः केवल उथले छिद्रों के लिए ±0.0005 इंच (±0.013 मिमी) के अन्दर रखी जा सकती है। कुछ स्थितियों में ±0.0001 इंच (±0.0038 मिमी) जितनी कड़ी सहनशक्ति को उथले छिद्रों में रखा जा सकता है, किन्तु यह महंगा है, 100% निरीक्षण और गैर-अनुरूप भागों की हानि से क्रय मूल्य बढ़ जाता है। जब बोरिंग दोहराव और स्पष्टता की सीमाएं पूरी हो जाती हैं, तो पीसना, ऑन करना और लैपिंग का सहारा लिया जाता है।
बोरिंग में सतह की फिनिश (सतह खुरदरापन) 8 से 250 माइक्रोइंच तक हो सकती है, जिसकी सामान्य सीमा 32 और 125 माइक्रोइंच के मध्य होती है।
संभवतः किसी भाग को बोरिंग द्वारा प्रदान की जाने वाली तुलना में रूप और आकार की अधिक स्पष्टता की आवश्यकता हो सकती है। उदाहरण के लिए, अनुकूलित बोरिंग में भी, बोर के विभिन्न भागों पर व्यास की भिन्नता संभवतः ही कभी 3 माइक्रोमीटर (.0001 इंच, दसवां भाग) से कम होती है, और यह सरलता से 5 से 20 माइक्रोमीटर (.0002-.0008 इंच, 2 से 8 दसवां भाग) हो सकती है। ऐसे छेद की टेपर, गोलाई त्रुटि और बेलनाकार त्रुटि, चूंकि उन्हें अधिकांश अन्य भागों में नगण्य माना जाएगा, कुछ अनुप्रयोगों के लिए अस्वीकार्य हो सकता है। ऐसे भागों के लिए, आंतरिक बेलनाकार ग्राइंडर विशिष्ट अनुवर्ती ऑपरेशन है। अधिकांशतः मशीनिंग ऑपरेशन में एक भाग को खुरदरा और अर्ध-तैयार किया जाएगा, फिर ऊष्मा के द्वारा उपचार किया जाएगा, और अंत में आंतरिक बेलनाकार पीसकर समाप्त किया जाएगा।
इसकी ज्यामितीय स्पष्टता (रूप, स्थिति) और वर्कपीस की कठोरता के संदर्भ में बोरिंग की सीमाएं वर्तमान के दशकों में कम हो रही हैं क्योंकि मशीनिंग विधियां निरंतर आगे बढ़ रही है। उदाहरण के लिए, सीमेंटेड कार्बाइड और सिरेमिक कटिंग इंसर्ट के नए ग्रेड ने स्पष्टता और सतह की गुणवत्ता में वृद्धि की है। जिसे बिना पीसे ही प्राप्त किया जा सकता है और वर्कपीस कठोरता मूल्यों की सीमा में वृद्धि हुई है। जो व्यावहारिक हैं। चूंकि केवल कुछ माइक्रोमीटर (कुछ दसवें भाग) की सहनशक्ति के लिए काम करना विनिर्माण प्रक्रिया को तर्कपूर्ण रूप से सामना करने और इस तथ्य पर विचार करने के लिए बाध्य करता है कि कोई भी वास्तविक वर्कपीस आदर्श रूप से कठोर और स्थिर नहीं है। प्रत्येक बार जब कोई कट लगाया जाता है (चाहे कितना भी छोटा हो), या कुछ सौ डिग्री का तापमान परिवर्तन होता है (चाहे कितना भी अस्थायी हो), वर्कपीस, या उसका एक भाग, नए आकार में आ जाने की संभावना है, यहां तक कि यदि गति अत्यंत छोटी है। कुछ स्थितियों में एक क्षेत्र में एक माइक्रोमीटर के एक अंश की गति को अनेक डेसीमीटर दूर वर्कपीस की विशेषता के लिए अनेक माइक्रोमीटर की स्थितिगत त्रुटि बनाने के लिए उत्तोलक के रूप में बढ़ाया जाता है। यह ऐसे कारक हैं, जो संभवतः आंतरिक और बाहरी बेलनाकार पीसने के विपरीत बोरिंग और मोड़कर परिष्करण को रोकते हैं। उच्चतम सीमा पर, मशीनिंग या पीसने की कोई भी पूर्णता पर्याप्त नहीं हो सकती है। जब इसे बनाते समय इसका भाग सहनशक्ति के अन्दर होने के पश्चात् यह अगले दिनों या महीनों में सहनशक्ति से बाहर हो जाता है। जब इंजीनियरों को ऐसी स्थिति का सामना करना पड़ता है, तो यह अन्य वर्कपीस सामग्री, या वैकल्पिक डिज़ाइन को खोजने के लिये प्रेरित करता है। जो माइक्रो या नैनो स्केल पर इसके भागों की सुविधाओं की गतिहीनता पर बहुत अधिक निर्भर होने से बचते हैं।
यह भी देखें
संदर्भ
- ↑ Pictorial History of England: Being a History of the People, as Well as a History of the Kingdom, Volume 1, By George Lillie Craik, Charles MacFarlane
- ↑ Kalpakjian 2001
- ↑ Todd & Allen 1994
ग्रन्थसूची
- Kalpakjian, Schmid (2001), Manufacturing Engineering and Technology, Upper Saddle River, NJ, USA: Prentice Hall
- Todd, Robert H.; Allen, Dell K. (1994), Manufacturing Processes Reference Guide, New York, NY, USA: Industrial Press