पेंटोमिनो
''5'' और "डॉमिनो" के लिए ग्रीक शब्द से व्युत्पन्न एक पेंटोमिनो (या 5-ओमिनो) क्रम 5 का एक पॉलीओमिनो है जो कि बिंदु से बिंदु तक योजित 5 समान आकार के वर्ग से बने समतल (ज्यामिति) में एक बहुभुज है। जब घूर्णन और प्रतिबिंब समरूपता को विभिन्न आकार नहीं माना जाता है तो 12 विभिन्नस्वतंत्र पॉलीओमिनो पेंटोमिनो होते हैं। जब प्रतिबिंबों को विशिष्ट माना जाता है तो 18 एकपक्षीय पॉलीओमिनो पेंटोमिनो होते हैं। जब घूर्णन को भी प्रथक माना जाता है तो 63 निश्चित पॉलीओमिनो पेंटोमिनो होते हैं।
मनोरंजक गणित में पेंटोमिनो टाइलिंग वर्ग प्रहेलिका और खेल लोकप्रिय हैं।[1] आमतौर पर टेट्रिस अनुकरण और रैम्पर्ट जैसे वीडियो खेल दर्पण प्रतिबिंबों को विशिष्ट मानते हैं और इस प्रकार 18 एकपक्षीय पेंटोमिनो के संपूर्ण सेट का उपयोग करते हैं।
12 पेंटोमिनो में से प्रत्येक कॉनवे मानदंड को पूरा करता है इसलिए प्रत्येक पेंटोमिनो सतह को टाइलिंग करने में सक्षम है।[2] प्रत्येक चिराल पेंटोमिनो बिना परावर्तित हुए सतह को टाइल कर सकता है।[3]
विशेष रूप से ओ पेंटोमिनो के लिए अक्षरों की समानता अधिक तनावपूर्ण है, लेकिन इस योजना में वर्णमाला के निरन्तर 12 अक्षरों का उपयोग करने का लाभ है।
इतिहास
1907 में प्रकाशित हेनरी डुडेनी की पुस्तक कैंटरबरी वर्ग-पहेलियाँ में पेंटोमिनोज़ के एक पूर्ण समुच्चय वाली प्रथम प्रहेलिका प्रदर्शित हुई है।[4] 1935 समस्यावादी फेयरी शतरंज अनुपूरक में पेंटोमिनो के एक संपूर्ण समुच्चय के साथ आयतों की प्रारंभिक टाइलिंग प्रदर्शित दी, पीआरसीएस और इसके उत्तराधिकारी, फेयरी शतरंज समीक्षा में आगे की टाइलिंग समस्याओं का पता लगाया गया था।[5] पेंटोमिनो को औपचारिक रूप से अमेरिकी प्रोफेसर सोलोमन डब्ल्यू गोलोम्ब के माध्यम से 1953 में और पश्चात् में उनकी 1965 की पुस्तक पॉलीओमिनोज़: वर्ग-पहेलियाँ, प्रतिरूप, समस्याएं और संकुलन में परिभाषित किया गया था।[1][6] मार्टिन गार्डनर के माध्यम से अक्टूबर 1965 में अमेरिकन वैज्ञानिक ने अपने गणितीय खेलों के स्तंभ में उन्हें सर्वसाधारण से परिचित कराया गया था। गोलोम्ब ने प्राचीन ग्रीक πέντε / पेंटे "फाइव" से "पेंटोमिनो" शब्द गढ़ा और डोमिनो के -ओमिनो ने "डोमिनो" के "डी-" की काल्पनिक व्याख्या की जैसे कि यह ग्रीक उपसर्ग "डी-" (दो) का एक रूप था। लैटिन वर्णमाला के अक्षरों के पश्चात् गोलोम्ब ने 12 मुक्त पॉलीओमिनो पेंटोमिनो का नाम दिया, जो कि वे समरूप थे।
जॉन हॉर्टन कॉनवे ने पेन्टोमिनो के लिए एक वैकल्पिक चिन्हक योजना प्रस्तावित की, जिसमें आई के अतिरिक्त ओ, एल के अतिरिक्त क्यू, एफ के अतिरिक्त आर, और एन के अतिरिक्त एस का उपयोग किया गया। विशेष रूप से ओ पेंटोमिनो के लिए अक्षरों की समानता अधिक तनावपूर्ण है, लेकिन इस योजना में वर्णमाला के निरन्तर 12 अक्षरों का उपयोग करने का लाभ है। कॉनवे के गेम ऑफ लाइफ पर चर्चा करने के लिए सम्मेलन के माध्यम से इसका उपयोग किया जाता है, उदाहरण के लिए, जब एफ-पेंटोमिनो के अतिरिक्त आर-पेंटोमिनो की बात की जाती है।
समरूपता
- एफ, एल, एन, पी, और वाई को 8 तरीकों से उन्मुख किया जा सकता है: 4 क्रमावर्तन के माध्यम से और 4 दर्पण छवि के लिए है। समरूपता समूह में मात्र समानता मानचित्रण शामिल है।
- टी, और यू को क्रमावर्तन के माध्यम से 4 तरीकों से उन्मुख किया जा सकता है। उनके पास मार्गदर्शनों के साथ संरेखित प्रतिबिंब समरूपता का एक अक्ष है। उनके समरूपता समूह में वर्गों के सिरों के समानांतर एक रेखा में दो तत्व समानता और प्रतिबिंब होते हैं।
- वी और डब्लू को भी क्रमावर्तन के माध्यम से 4 तरीकों से उन्मुख किया जा सकता है। उनके पास मार्गदर्शनों के 45 डिग्री पर परावर्तन समरूपता का अक्ष है। उनके समरूपता समूह में दो तत्व समानता और विकर्ण प्रतिबिंब होते हैं।
- जेड को 4 तरीकों से उन्मुख किया जा सकता है: 2 क्रमावर्तन के माध्यम से, और 2 और दर्पण छवि के लिए है। इसमें बिंदु समरूपता है, जिसे क्रम 2 की आवर्तनशील समरूपता के रूप में भी जाना जाता है। इसके समरूपता समूह में दो तत्व समानता और 180° क्रमावर्तन होते हैं।
- क्रमावर्तन के माध्यम से मुझे 2 तरह से उन्मुख किया जा सकता है। इसमें प्रतिबिंब समरूपता के दो अक्ष हैं, जो दोनों मार्गदर्शनों के साथ संरेखित हैं। इसके समरूपता समूह में चार तत्व समानता, दो प्रतिबिंब और 180 डिग्री क्रमावर्तन हैं। यह क्रम 2 का डायहेड्रल समूह है, जिसे क्लेन चार-समूह के रूप में भी ज्ञात है।
- एक्स को मात्र एक ही तरीके से उन्मुख किया जा सकता है। इसमें परावर्तन समरूपता के चार अक्ष हैं, जो मार्गदर्शनों और विकर्णों के साथ संरेखित हैं, और क्रम 4 की आवर्तनशील समरूपता है। इसके समरूपता समूह क्रम 4 के डायहेड्रल समूह में आठ तत्व हैं।
एफ, एल, एन, पी, वाई, और जेड पेंटोमिनोइज चिरायता (गणित) हैं; उनके प्रतिबिंबों (F', J, N', Q, Y', S) को जोड़ने से एकपक्षीय पेन्टोमिनो की संख्या 18 हो जाती है। अगली तीन श्रेणियां (T, U, V, W, Z) चार गुना, I दो बार और X मात्र एक बार गिना जाता है। इसका परिणाम 5×8 + 5×4 + 2 + 1 = 63 स्थिर पेन्टोमिनो है।
उदाहरण के लिए, L, F, N, P और Y पेंटोमिनोइज़ के आठ संभावित झुकाव इस प्रकार हैं:
सामान्यतः 2डी आंकड़ों के लिए दो और श्रेणियां हैं:
- 90 डिग्री के घूर्णन के माध्यम से 2 तरीकों से उन्मुख होने के नाते, प्रतिबिंब समरूपता के दो अक्षों के साथ, दोनों विकर्णों के साथ संरेखित होते हैं। इस प्रकार की समरूपता के लिए कम से कम heptomino की आवश्यकता होती है।
- 2 तरह से उन्मुख होना, जो एक दूसरे की दर्पण छवि हैं, उदाहरण के लिए स्वस्तिक। इस प्रकार की समरूपता के लिए कम से कम एक octomino की आवश्यकता होती है।
आयताकार आयामों का निर्माण
एक मानक पेंटोमिनो प्रहेलिका पेंटोमिनोइज के साथ एक आयताकार बॉक्स को चौकोर करना है, अर्थात बिना ओवरलैप और बिना अंतराल के इसे कवर करना। 12 पेंटोमिनो में से प्रत्येक का क्षेत्रफल 5 इकाई वर्ग है, इसलिए बॉक्स में 60 इकाई का क्षेत्रफल होना चाहिए। संभावित आकार 6×10, 5×12, 4×15 और 3×20 हैं।
6×10 का मामला पहली बार 1960 में सी. ब्रायन हैसेलग्रोव और जेनिफर हैसलग्रोव के माध्यम से हल किया गया था।[7] संपूर्ण आयत के क्रमावर्तन और प्रतिबिंब के माध्यम से प्राप्त तुच्छ विविधताओं को छोड़कर, बिल्कुल 2339 समाधान हैं, किन्तु पेंटोमिनोइज़ के एक सबसमुच्चय के क्रमावर्तन और प्रतिबिंब सहित (जो कभी-कभी सरल तरीके से एक अतिरिक्त समाधान प्रदान करता है)। 5×12 बॉक्स में 1010 समाधान हैं, 4×15 बॉक्स में 368 समाधान हैं, और 3×20 बॉक्स में सिर्फ 2 समाधान हैं (एक चित्र में दिखाया गया है, और दूसरा घुमाकर दिखाए गए समाधान से प्राप्त किया जा सकता है, एक संपूर्ण के रूप में, एल, एन, एफ, टी, डब्ल्यू, वाई, और जेड पेंटोमिनोइज़ से युक्त ब्लॉक)।
कुछ सीमा तक आसान (अधिक सममित) प्रहेलिका, केंद्र में 2×2 छेद के साथ 8×8 आयत, दाना स्कॉट के माध्यम से 1958 तक हल की गई थी।[8] 65 उपाय हैं। स्कॉट का एल्गोरिदम बैक ट्रैकिंग कंप्यूटर प्रोग्राम के पहले अनुप्रयोगों में से एक था। इस प्रहेलिका की विविधताएं चार छेदों को किसी भी स्थिति में रखने की अनुमति देती हैं। बाहरी लिंक में से एक इस नियम का उपयोग करता है। इस तरह के अधिकांश प्रतिरूप सॉल्व करने योग्य हैं, बोर्ड के दो कोनों के पास छेद के प्रत्येक जोड़े को इस तरह से रखने के अपवाद के साथ कि दोनों कोनों को मात्र एक पी-पेंटोमिनो के माध्यम से फिट किया जा सकता है, या एक टी-पेंटोमिनो या यू-पेंटोमिनो को मजबूर किया जा सकता है। कोने ऐसे कि एक और छेद बनाया जाता है।
ऐसी समस्याओं को हल करने के लिए कुशल एल्गोरिदम का वर्णन किया गया है, उदाहरण के लिए डोनाल्ड नुथ के माध्यम से।[9] आधुनिक निजी कंप्यूटर पर चलने वाली ये पेंटोमिनो पहेलियां अब मात्र सेकंड में हल की जा सकती हैं।
पेंटोमिनो समुच्चय एकमात्र मुफ्त पॉलीओमिनो समुच्चय है जिसे तुच्छ monomino और डोमिनो (गणित) समुच्चयों के अपवाद के साथ एक आयत में पैक किया जा सकता है, जिनमें से प्रत्येक में मात्र एक आयत होता है।
भरने वाले डिब्बे
एक पेंटाक्यूब पांच क्यूब्स का एक polycube है। 29 पेंटाक्यूब में से, ठीक बारह पेंटाक्यूब समतल (1-परत) हैं और एक वर्ग की गहराई तक एक्सट्रूडेड बारह पेंटोमिनो के अनुरूप हैं।
एक पेंटाक्यूब प्रहेलिका या 3डी पेंटोमिनो प्रहेलिका, 12 फ्लैट पेंटाक्यूब के साथ एक 3-आयामी बॉक्स को भरने के बराबर है, अर्थात इसे बिना ओवरलैप और बिना अंतराल के कवर करें। चूंकि प्रत्येक पेंटाक्यूब में 5 यूनिट क्यूब की मात्रा होती है, बॉक्स में 60 यूनिट की मात्रा होनी चाहिए। संभावित आकार 2×3×10 (12 समाधान), 2×5×6 (264 समाधान) और 3×4×5 (3940 समाधान) हैं। निम्नलिखित प्रत्येक स्थितियों का एक समाधान है।[10] वैकल्पिक रूप से पांच क्यूब्स के संयोजन पर भी विचार किया जा सकता है जो स्वयं 3डी हैं, अर्थात क्यूब्स की एक परत का हिस्सा नहीं हैं। चूँकि, 12 एक्सट्रूडेड पेंटोमिनोइज़ के अतिरिक्त, चिरल जोड़े के 6 समुच्चय और 5 टुकड़े कुल 29 टुकड़े बनाते हैं, जिसके परिणामस्वरूप 145 क्यूब्स बनते हैं, जो एक 3D बॉक्स नहीं बनेगा (145 मात्र 29 × 5 × 1 हो सकता है, जो गैर -फ्लैट पेंटोमिनो में फिट नहीं हो सकता)।
विशेष प्रकार के बोर्ड या पट्टे के खेल जैसे शतरंज, साँप सीढ़ी आदि
पेन्टोमिनो पर पूरी तरह से आधारित कौशल के बोर्ड गेम हैं। ऐसे खेलों को अधिकांशतः मात्र पेंटोमिनोइज़ कहा जाता है।
खेलों में से एक 8x8 ग्रिड पर दो या तीन खिलाड़ियों के माध्यम से खेला जाता है। खिलाड़ी बारी-बारी से पेंटोमिनो को बोर्ड पर रखते हैं जिससे वे वर्तमान टाइलों के साथ ओवरलैप न हों और किसी भी टाइल का एक से अधिक बार उपयोग न किया जाए। उद्देश्य बोर्ड पर टाइल लगाने वाला अंतिम खिलाड़ी बनना है। पेंटोमिनो के इस संस्करण को Golomb's Game कहा जाता है।[11]
1996 में हिलेरी ऑरमैन के माध्यम से दो-खिलाड़ी संस्करण को बोर्ड गेम हल किया गया था। लगभग 22 बिलियन बोर्ड पदों की जाँच करके यह पहली खिलाड़ी की जीत सिद्ध हुई।[12] पेंटोमिनो , और इसी तरह के आकार, कई अन्य टाइलिंग गेम, प्रतिरूप और पहेलियों का आधार भी हैं। उदाहरण के लिए, फ्रांसीसी बोर्ड गेम ब्लोकस पॉलीओमिनो के 4 रंगीन समुच्चयों के साथ खेला जाता है, प्रत्येक में प्रत्येक पेंटोमिनो (12), टेट्रोमिनो (5), ट्रायोमिनो (2) डोमिनो (1) और मोनोमिनो (1) होते हैं। खेल पेंटोमिनोइज़ की तरह, लक्ष्य आपकी सभी टाइलों का उपयोग करना है, और यदि अंतिम चाल पर मोनोमिनो खेला जाता है तो एक बोनस दिया जाता है। सबसे कम ब्लाकों शेष रखने वाला खिलाड़ी जीत जाता है।
कैथेड्रल (बोर्ड गेम) का खेल भी पॉलीओमिनो पर आधारित है।[13] पार्कर ब्रदर्स ने 1966 में यूनिवर्स नामक एक मल्टी-प्लेयर पेंटोमिनो बोर्ड गेम जारी किया। इसकी थीम 1968 की फिल्म 2001: ए स्पेस ओडिसी (फिल्म) से हटाए गए दृश्य पर आधारित है। 2001: ए स्पेस ओडिसी जिसमें एक अंतरिक्ष यात्री दो- एचएएल 9000 के खिलाफ खिलाड़ी पेंटोमिनो गेम (पूल बनाम एचएएल 9000 को निरंतर रखा गया था)। बोर्ड गेम बॉक्स के सामने फिल्म के दृश्यों के साथ-साथ इसे भविष्य के खेल के रूप में वर्णित करने वाला कैप्शन भी है। खेल लाल, पीले, नीले और सफेद रंग में पेंटोमिनो के चार समुच्चय के साथ आता है। बोर्ड में दो खेलने योग्य क्षेत्र हैं: दो खिलाड़ियों के लिए एक आधार 10x10 क्षेत्र जिसमें दो से अधिक खिलाड़ियों के लिए प्रत्येक तरफ अतिरिक्त 25 वर्ग (10 की दो पंक्तियाँ और पाँच की एक ऑफ़समुच्चय पंक्ति) हैं।
गेम निर्माता लोनपोस के पास कई गेम हैं जो एक ही पेंटोमिनो का उपयोग करते हैं, किन्तु विभिन्न गेम प्लेन पर। उनके 101 गेम में 5 x 11 प्लेन है। विमान के आकार को बदलकर, हजारों वर्ग-पहेलियाँ खेली जा सकती हैं, चूँकि इन पहेलियों का मात्र एक अपेक्षाकृत छोटा चयन ही प्रिंट में उपलब्ध है।
साहित्य
पेंटोमिनो को आर्थर सी. क्लार्क के 1975 के उपन्यास इंपीरियल पृथ्वी के एक प्रमुख सबप्लॉट में चित्रित किया गया था। क्लार्क ने एक निबंध भी लिखा था जिसमें उन्होंने इस खेल का वर्णन किया था और बताया था कि वह कैसे इसके आदी हो गए।[14] उन्हें ब्लू बैलिट के वर्मीर का पीछा करते हुए में भी चित्रित किया गया था, जिसे 2003 में प्रकाशित किया गया था और ब्रेट हेलक्विस्ट के माध्यम से चित्रित किया गया था, साथ ही इसके सीक्वेल, द राइट 3 और द काल्डर गेम।[15] 27 जून, 2012 के न्यूयॉर्क टाइम्स क्रॉसवर्ड प्रहेलिका में, 37 के पार 11-अक्षर वाले शब्द का सुराग इस प्रहेलिका के काले वर्गों के माध्यम से गठित 12 आकृतियों का पूरा समुच्चय था।[16]
वीडियो गेम
- टेट्रिस पेंटोमिनो प्रहेलिका से प्रेरित था, चूंकि यह चार-ब्लॉक टेट्रोमिनो का उपयोग करता है। कुछ टेट्रिस क्लोन और वेरिएंट, जैसे बेल लैब्स से प्लान 9 के साथ सम्मिलित गेम 5s, और जादुई टेट्रिस चैलेंज, पेंटोमिनो का उपयोग करते हैं।
- डेडलियन कार्य संपूर्ण खेल में पेंटोमिनो प्रहेलिका का उपयोग करता है।
यह भी देखें
पिछले और अगले आदेश
अन्य
- टाइलिंग प्रहेलिका
- कैथेड्रल (बोर्ड गेम) बोर्ड गेम
- सोलोमन डब्ल्यू गोलोम्ब
टिप्पणियाँ
- ↑ 1.0 1.1 "Eric Harshbarger - Pentominoes".
- ↑ Rhoads, Glenn C. (2003). प्लानर टिलिंग्स एंड द सर्च फॉर एन एपेरियोडिक प्रोटोटाइल. PhD dissertation, Rutgers University.
- ↑ Gardner, Martin (August 1975). "More about tiling the plane: the possibilities of polyominoes, polyiamonds and polyhexes". Scientific American. 233 (2): 112–115. doi:10.1038/scientificamerican0775-112.
- ↑ "कैंटरबरी पज़ल्स की प्रोजेक्ट गुटेनबर्ग ईबुक, हेनरी अर्नेस्ट डुडेनी द्वारा". www.gutenberg.org. Retrieved 2022-03-26.
- ↑ "Dissection Problems in PFCS/FCR: Summary of Results in Date Order". www.mayhematics.com. Retrieved 2022-03-26.
- ↑ "people.rit.edu - Introduction - polyomino and pentomino".
- ↑ C. B. Haselgrove; Jenifer Haselgrove (October 1960). "Pentominoes के लिए एक कंप्यूटर प्रोग्राम" (PDF). Eureka. 23: 16–18.
- ↑ Dana S. Scott (1958). "Programming a combinatorial puzzle". Technical Report No. 1, Department of Electrical Engineering, Princeton University.
- ↑ Donald E. Knuth. "Dancing links" (Postscript, 1.6 megabytes). Includes a summary of Scott's and Fletcher's articles.
- ↑ Barequet, Gill; Tal, Shahar (2010). "Solving General Lattice Puzzles". In Lee, Der-Tsai; Chen, Danny Z.; Ying, Shi (eds.). एल्गोरिदम में फ्रंटियर्स. Lecture Notes in Computer Science. Vol. 6213. Berlin Heidelberg: Springer Science+Business Media. pp. 124–135. doi:10.1007/978-3-642-14553-7_14. ISBN 978-3-642-14552-0.
- ↑ Pritchard (1982), p. 83.
- ↑ Hilarie K. Orman. Pentominoes: A First Player Win (Pdf).
- ↑ "FAQ".
- ↑ Could you solve Pentominoes? by Arthur C. Clarke, Sunday Telegraph Magazine, September 14, 1975; reprinted in Clarke's Ascent to Orbit: A Scientific Autobiography, New York: John Wiley & Sons, 1984. ISBN 047187910X
- ↑ Chasing Vermeer, by Blue Balliett, Scholastic Paperbacks, ISBN 0439372976
- ↑ Buckley, Mike (June 27, 2012). Shortz, Will (ed.). "क्रॉसवर्ड". New York Times. Retrieved 30 July 2020.
{{cite web}}
: CS1 maint: url-status (link)
संदर्भ
- Chasing Vermeer, with information about the book Chasing Vermeer and a click-and-drag pentomino board.
- Pritchard, D. B. (1982). "Golomb's Game". Brain Games. Penguin Books Ltd. pp. 83–85. ISBN 0-14-00-5682-3.
बाहरी संबंध
- Pentomino configurations and solutions An exhaustive listing of solutions to many of the classic problems showing how each solution relates to the others.