प्रतिबिंब समूह

From Vigyanwiki
Revision as of 15:55, 6 October 2023 by alpha>Neeraja (added Category:Vigyan Ready using HotCat)

समूह सिद्धांत और ज्यामिति में, एक प्रतिबिंब समूह एक असतत समूह होता है जो परिमित-आयामी यूक्लिडियन अंतरिक्ष के प्रतिबिंब (गणित) के एक समूह द्वारा उत्पन्न होता है। एक नियमित पॉलीटॉप की समरूपता समूह या एक नियमित पॉलीटॉप की सर्वांगसम प्रतियों द्वारा यूक्लिडियन स्थान के एक चौकोर का अनिवार्य रूप से एक प्रतिबिंब समूह है। प्रतिबिंब समूहों में वेइल समूह और क्रिस्टलोग्राफिक कॉक्सेटर समूह भी सम्मिलित हैं। जबकि ऑर्थोगोनल समूह प्रतिबिंबों (कार्टन-ड्यूडोने प्रमेय द्वारा) द्वारा उत्पन्न होता है, यह एक निरंतर समूह (वास्तव में, लाइ समूह) है, असतत समूह नहीं है, और सामान्यतः इसे अलग से माना जाता है।

परिभाषा

मान लीजिए E एक परिमित-विमीय यूक्लिडियन समष्टि है। एक 'परिमित प्रतिबिंब समूह' ई के सामान्य रैखिक समूह का एक उपसमूह है जो मूल के माध्यम से गुजरने वाले अतिसमतल में ऑर्थोगोनल प्रतिबिंब (गणित) के समूह द्वारा उत्पन्न होता है। एक 'एफ़िन प्रतिबिंब समूह' ई के एफ़िन समूह का एक असतत उपसमूह है जो ई के एफ़िन प्रतिबिंबों के एक समूह द्वारा उत्पन्न होता है (इस आवश्यकता के बिना कि प्रतिबिंब अतिसमतल मूल से गुजरते हैं)।

संबंधित धारणाओं को अन्य क्षेत्र (गणित) पर परिभाषित किया जा सकता है, जिससे 'जटिल प्रतिबिंब समूह' और परिमित क्षेत्र पर प्रतिबिंब समूहों के अनुरूप हो सकते हैं।

उदाहरण

समतल

दो आयामों में, परिमित प्रतिबिंब समूह डायहेड्रल समूह होते हैं, जो दो पंक्तियों में प्रतिबिंब द्वारा उत्पन्न होते हैं जो एक कोण बनाते हैं और कॉक्सेटर आरेख के अनुरूप है इसके विपरीत दो आयामों में चक्रीय बिंदु समूह प्रतिबिंबों से उत्पन्न नहीं होते हैं, और वास्तव में कोई प्रतिबिंब नहीं होते हैं - चूँकि वे डायहेड्रल समूह के सूचकांक 2 के उपसमूह हैं।

अनंत प्रतिबिंब समूहों में फ्रिज़ समूह और और वॉलपेपर समूह , , , और .सम्मिलित हैं यदि दो रेखाओं के बीच का कोण पाई का अपरिमेय गुणक है, तो इन रेखाओं में परावर्तनों द्वारा उत्पन्न समूह अनंत और असतत है, इसलिए, यह परावर्तन समूह नहीं है।

स्थान

परिमित प्रतिबिंब समूह तीन आयामों Cnv, Dnh, और पांच प्लेटोनिक ठोस के समरूपता समूह है। दोहरी नियमित पॉलीहेड्रा (क्यूब और ऑक्टाहेड्रॉन, साथ ही डोडकाहेड्रॉन और आईकोसाहेड्रॉन) आइसोमोर्फिक समरूपता समूहों को जन्म देते हैं। 'R3' के परिमित प्रतिबिंब समूहों का वर्गीकरण एडीई वर्गीकरण का एक उदाहरण है।

कॉक्सेटर समूहों के साथ संबंध

एक प्रतिबिंब समूह डब्ल्यू एच.एस.एम. कॉक्सेटर द्वारा खोजे और अध्ययन किए गए एक विशेष प्रकार की समूह प्रस्तुति को स्वीकार करता है।[1] एक निश्चित मौलिक डोमेन कक्ष के चेहरे में प्रतिबिंब क्रम 2 के डब्ल्यू का जेनरेटर ri हैं । उनके बीच के सभी संबंध औपचारिक रूप से संबंधों से अनुसरण करते हैं

इस तथ्य को व्यक्त करते हुए कि दो अतिसमतल Hi और Hj में परावर्तन ri और rj का गुणनफल एक कोण पर मिलने से कोण से एक घूर्णन होता है जो उप-स्थान को ठीक करता है HiHj of कोडिमेंशन 2 इस प्रकार एक अमूर्त समूह के रूप में देखा गया, प्रत्येक प्रतिबिंब समूह एक कॉक्सेटर समूह है।

परिमित क्षेत्र

परिमित क्षेत्रों पर काम करते समय, एक "प्रतिबिंब" को एक मानचित्र के रूप में परिभाषित करता है जो एक अतिसमतल को ठीक करता है (अन्यथा उदाहरण के लिए विशेषता 2 में कोई प्रतिबिंब नहीं होगा, क्योंकि -1=1 इसलिए प्रतिबिंब पहचान हैं)। [उद्धरण वांछित] ज्यामितीय रूप से, यह अतिसमतल में शियर्स को सम्मिलित करने के समान है। विशेषता 2 नहीं के परिमित क्षेत्रों पर प्रतिबिंब समूहों को ज़लेस्की & सेरेज़्किन (1981) किया गया था।

सामान्यीकरण

प्रतिबिंबों द्वारा उत्पन्न अधिक सामान्य रीमैनियन कई गुना के असतत आइसोमेट्री समूहों पर भी विचार किया गया है। सबसे महत्वपूर्ण वर्ग श्रेणी 1 के रिमेंनियन सममित रिक्त स्थान से उत्पन्न होता है: n-क्षेत्र Sn, परिमित परावर्तन समूहों के अनुरूप, यूक्लिडियन स्पेस 'R'n, के अनुरूप एफाइन प्रतिबिंब समूह, और अतिपरवलयिक स्थान Hn, जहां संबंधित समूहों को 'अतिपरवलयिक परावर्तन समूह' कहा जाता है। दो आयामों में, त्रिभुज समूहों के प्रतिबिंब समूह सम्मिलित होते हैं।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. Coxeter (1934, 1935)
  2. Goodman (2004).


ग्रन्थसूची

  • Coxeter, H.S.M. (1934), "Discrete groups generated by reflections", Ann. of Math., 35 (3): 588–621, CiteSeerX 10.1.1.128.471, doi:10.2307/1968753, JSTOR 1968753
  • Coxeter, H.S.M. (1935), "The complete enumeration of finite groups of the form ", J. London Math. Soc., 10: 21–25, doi:10.1112/jlms/s1-10.37.21
  • Goodman, Roe (April 2004), "The Mathematics of Mirrors and Kaleidoscopes" (PDF), American Mathematical Monthly, 111 (4): 281–298, CiteSeerX 10.1.1.127.6227, doi:10.2307/4145238, JSTOR 4145238
  • Zalesskiĭ, Aleksandr E.; Serežkin, V N (1981), "Finite Linear Groups Generated by Reflections", Math. USSR Izv., 17 (3): 477–503, Bibcode:1981IzMat..17..477Z, doi:10.1070/IM1981v017n03ABEH001369


पाठ्यपुस्तकें


बाहरी संबंध