सिस्टोलिक ज्यामिति

From Vigyanwiki
Revision as of 13:34, 12 July 2023 by alpha>Neetua08
लेमन (ज्यामिति) पर एक अल्पांतरी हाइपरेलिप्टिक मामले में ग्रोमोव के भरने वाले क्षेत्र अनुमान के प्रमाण को दर्शाता है (नीचे सिस्टोलिक ज्यामिति भरण क्षेत्र अनुमान देखें)।

गणित में, सिस्टोलिक ज्यामिति विविध कार्य और बहुकोणीय आकृति सांस्थितिक के सिस्टोलिक अपरिवर्तनीय का अध्ययन है, जैसा कि शुरू में चार्ल्स लोवेनर के माध्यम से कल्पना की गई थी और मिखाइल ग्रोमोव (गणितज्ञ), माइकल फ्रीडमैन, पीटर इतिहास , मिखाइल काट्ज़, लैरी गुथ और अन्य के माध्यम से इसके अंकगणितीय ऊर्जापंथी और सांस्थितिक अभिव्यक्तियों में विकसित की गई थी। सिस्टोलिक ज्यामिति का अक्रियाशील गति वाला परिचय भी देखें।

सिस्टोल की धारणा

स्थूलक पर सबसे छोटा चक्र

एक सघन सेट मापीय स्थान X का सिस्टोल, X का एक मापीय अपरिवर्तनीय है, जिसे (यानी एक चक्र जिसे व्यापक स्थान X में किसी बिंदु पर अनुबंधित नहीं किया जा सकता है)। अधिक तकनीकी भाषा में हम X के मौलिक समूह में अ-साधारण संयुग्मी वर्गों का प्रतिनिधित्व करने वाले मुक्त चक्रों पर लंबाई को कम करते हैं। जब एक्स एक लेखाचित्र है जिसे डब्ल्यू. टी. टुट्टे के माध्यम से परिधि पर 1947 के लेख के पश्चात् आमतौर पर अपरिवर्तनीय को परिधि के रूप में संदर्भित किया जाता है।[1] संभवतः टुट्टे के लेख से प्रेरित होकर लोवेनर ने 1940 के दशक के अंत में सतहों पर सिस्टोलिक प्रश्नों के विषय में विचार करना प्रारंभ किया जिसके परिणामस्वरूप उनके छात्र पाओ मिंग पु के माध्यम से 1950 में अभिधारणा प्रस्तुत की गई। वास्तविक शब्द "सिस्टोल" एक चौथाई सदी पश्चात्त क मार्सेल बर्जर के माध्यम से निर्मित नहीं गया था।

अनुसंधान की इस नेतृत्व को स्पष्ट रूप से आर. अकोला और सी के पत्रों के प्रकाशन के तुरंत बाद 1961-62 शैक्षणिक वर्ष के दौरान स्ट्रासबर्ग विश्वविद्यालय के पुस्तकालय में बर्जर के साथ वार्तालाप में रेने थॉम की एक टिप्पणी से और अधिक प्रोत्साहन मिला। इन सिस्टोलिक असमानताओं से संबंधित थॉम ने कथित रूप से कहा कि यह परिणाम मौलिक महत्व के हैं

इसके पश्चात् बर्जर ने वर्तमान ही में अमेरिकन मैथमैटिकल सोसाइटी के ज्ञापन के मार्च 2008 अंक में लेखों और पुस्तकों की एक श्रृंखला में इस विषय को लोकप्रिय बनाया (नीचे संदर्भ देखें)। सिस्टोलिक ज्यामिति और सांस्थिति के लिए वेबसाइट पर एक ग्रन्थसूची संदर्भिका में वर्तमान में 160 से अधिक लेख शामिल हैं। सिस्टोलिक ज्यामिति एक शीघ्रता से विकसित होने वाला क्षेत्र है, जिसमें प्रमुख पत्रिकाओं में अनेक आधुनिक प्रकाशन शामिल हैं। वर्तमान ही में (नीचे काट्ज़ और रुड्यक का 2006 का प्रपत्र देखें) लस्टर्निक-श्निरेलमैन श्रेणी का संपर्क सामने आया है। ऐसे संपर्क के अस्तित्व को सिस्टोलिक सांस्थिति में एक प्रमेय के रूप में विचार करा जा सकता है।

3-स्थान में एक केंद्रीय सममित बहुफलक का गुण

R3 में प्रत्येक उत्तल केंद्रीय सममित पॉलीहेड्रॉन P विपरीत (एंटीपोडल) बिंदुओं की एक युग्मन और उन्हें संचय वाली लंबाई L का एक पथ स्वीकार करता है और P की सीमा ∂P पर स्थित है, जो संतोषजनक है

एक वैकल्पिक सूत्रीकरण इस प्रकार है। सतह क्षेत्र A के किसी भी केंद्रीय सममित उत्तल निकाय को एक क्षेत्र के माध्यम से प्राप्त सबसे मजबूत उपयुक्त के साथ लंबाई , के एक बंधन के माध्यम से निष्पीडित जा सकता है। यह गुण पुस की असमानता (नीचे देखें) के एक विशेष मामले के सामान है, जो शुरुआती सिस्टोलिक असमानताओं में से एक है।

अवधारणाएँ

क्षेत्र के अनुमान का प्रारंभिक विचार देने के लिए निम्नलिखित टिप्पणियाँ की जा सकती हैं। उपर्युक्त उद्धृत बर्जर के प्रति थॉम की टिप्पणी का मुख्य विषय निम्नलिखित प्रतीत होता है। जब भी किसी को ज्यामितीय अपरिवर्तनीयता से संबंधित असमानता का सामना करना पड़ता है तो ऐसी वृत्तांत अपने आप में दिलचस्प होती है और तब और भी दिलचस्प होती है जब असमानता तीव्र (यानी, सर्वोत्तम) होती है। शास्त्रीय समपरिमापीय (गणित) असमानता एक उचित उदाहरण है।

टोरस

सतहों के विषय में सिस्टोलिक प्रश्नों में, अभिन्न-ज्यामितीय समरूपता विशेष रूप से महत्वपूर्ण भूमिका निभाती हैं। साधारणतया रूप से वर्णन करे तो एक ओर अभिन्न समरूपता संबंधित क्षेत्र है और दूसरी ओर चक्र के उपयुक्त परिवारिक ऊर्जा का औसत है। कॉची-श्वार्ज़ असमानता के अनुसार, लंबाई वर्ग के लिए ऊर्जा एक उपर्युक्त सीमा है। इसलिए सिस्टोल के क्षेत्रफल और वर्ग के मध्य एक असमानता प्राप्त होती है। ऐसा दृष्टिकोण लोवेनर असमानता दोनों के लिए काम करता है:

टोरस के लिए, जिस स्थान पर समानता का मामला समतल टोरस के माध्यम से प्राप्त किया जाता है जिसका डेक परिवर्तन ईसेनस्टीन पूर्णांक का जालक बनाता है,

R3 में P2(R) का प्रतिनिधित्व करने वाली रोमन सतह का जीवन्तता

और वास्तविक प्रक्षेप्य तल P2(R) के लिए पुस की असमानता के लिए:

,

निरंतर गॉसियन वक्रता की एक मापीय की विशेषता वाली समानता के साथ है।

विचरण के लिए संगणनात्मक सूत्र का परिवर्तन वास्तव में आइसोसिस्टोलिक त्रुटि के साथ लोवेनर की टोरस असमानता का निम्नलिखित संस्करण उत्पन्न करता है:

जिस स्थान पर f अपने अनुरूप वर्ग में एक इकाई क्षेत्र समतल मापीय के संबंध में मापीय का अनुरूप कारक है। इस असमानता को आइसोपेरिमेट्रिक त्रुटि के साथ बोन्सन की असमानता के अनुरूप माना जा सकता है, जो आइसोपेरिमेट्रिक असमानता को मजबूत करता है।

इस प्रकार की अनेक नई असमानताएँ वर्तमान में शोध की गई हैं, जिनमें सार्वभौमिक आयतन निम्न सीमाएँ भी शामिल हैं। सतहों के सिस्टोल पर अधिक विवरण दिखाई देते हैं।


ग्रोमोव की सिस्टोलिक असमानता

क्षेत्र में सबसे प्रगाढ़ परिणाम ग्रोमोव की एक आवश्यक n-अनेक m के होमोटॉपी 1-सिस्टोल के लिए असमानता है:

जिस स्थान पर Cn एक सार्वभौमिक स्थिरांक है जो मात्र M के आयाम पर निर्भर करता है। यहां होमोटॉपी सिस्टोल sysπ1 परिभाषा के अनुसार M में एक गैर-अनुबंध चक्र की सबसे न्यूनतम लंबाई है। किसी बहुविध को आवश्यक कहा जाता है यदि उसका मौलिक वर्ग [M] उसके मौलिक समूह की समरूपता (गणित) में एक असाधारण वर्ग का प्रतिनिधित्व करता है। प्रमाण में एक नया अपरिवर्तनीय शामिल है जिसे ग्रोमोव के माध्यम से प्रस्तुत पूरण त्रिज्या कहा जाता है। जिसे निम्नानुसार परिभाषित किया गया है।


गुणांक वलय 'Z' या 'Z2' को A के माध्यम से निरूपित करें, यह इस तथ्य पर निर्भर करता है कि M उन्मुख है या नहीं है। तत्पश्चात एक सघन n-आकार बहुविध M का मूल वर्ग, जिसे [M ] कहा जाता है, का संचालक है। यूक्लिडियन अंतराल E में M के समावेश को देखते हुए, हम नियत करते हैं

जिस स्थान पर ιε, E में इसके ε-पड़ोस Uε M में M को शामिल करने से प्रेरित समावेश समरूपता है।

ऐसी स्थिति में पूर्ण भरने वाले त्रिज्या को परिभाषित करने के लिए जहां M एक रीमैनियन मापीय g ग्रोमोव से सुसज्जित है, इस प्रकार आगे बढ़ता है। सी. कुराटोस्की के कारण एक प्रक्रम अंतः स्थापन का लाभ उठाता है। एक M को बानाख (बीजगणित) अंतराल L(M) में M पर परिबद्ध बोरेल फ़ंक्शंस में सन्निहित करता है, जो आदर्श से सुसज्जित है। अर्थात् हम समस्त y ∈ M के लिए सूत्र fx(y) = d(x,y) के माध्यम से परिभाषित फ़ंक्शन fx∈L(M) के लिए एक बिंदु x ∈ M को प्रतिचित्र करते हैं, जहां d मापीय के माध्यम से परिभाषित अंतर फ़ंक्शन है। त्रिभुज असमानता से हमारे पास है और इसलिए आंतरिक दूरी और परिवेश की दूरी व्यवस्थापन वाले सटीक अर्थों में अंतर्संबंध दृढ़ता से सममितीय है। यदि व्यापक स्थान एक हिल्बर्ट स्थान है, तब भी जब M रीमैनियन क्षेत्र है (विपरीत बिंदुओं के मध्य की दूरी π होनी चाहिए, 2 नहीं!) तो इतनी दृढ़ता से सममितीय अंतः स्थापन असंभव है। तत्पश्चात हम उपरोक्त सूत्र में E = L(M) समुच्चय करते हैं और परिभाषित करते हैं

अर्थात्, ग्रोमोव ने सिस्टोल और भरण की त्रिज्या से संबंधित एक तीव्र असमानता साबित की,

समस्त आवश्यक विविध कार्य M के साथ-साथ असमानता के लिए भी मान्य है

समस्त विवृत विविध कार्य के लिए मान्य M.

एस. वेंगर के माध्यम से ज्यामितीय माप सिद्धांत में वर्तमान के परिणामों के आधार पर, एल. एम्ब्रोसियो और बी. किर्चहैम के पूर्व के कार्य पर आधारित एक प्रमाण का सारांश, नीचे संदर्भित सिस्टोलिक ज्यामिति और सांस्थिति पुस्तक की धारा 12.2 में दिखाई देता है। ग्रोमोव की असमानता के प्रमाण के लिए एक समस्त प्रकार से प्रथक दृष्टिकोण वर्तमान ही में लैरी गुथ के माध्यम से प्रस्तावित किया गया था।[2]

ग्रोमोव की स्थिर असमानता

1-सिस्टोलिक अपरिवर्तनीय (चक्र की लंबाई के संदर्भ में परिभाषित) और उच्चतर, के-सिस्टोलिक अपरिवर्तनीय (चक्रों के क्षेत्रों आदि के संदर्भ में परिभाषित) के मध्य एक महत्वपूर्ण अंतर को विचार में रखा जाना चाहिए। जबकि 1-सिस्टोल को शामिल करते हुए अनेक सर्वोत्तम सिस्टोलिक असमानताएं अब तक प्राप्त की जा चुकी हैं, विशुद्ध रूप से उच्च के-सिस्टोल को शामिल करने वाली एकमात्र सर्वोत्तम असमानता ग्रोमोव की सर्वोत्तम स्थिर 2-सिस्टोलिक असमानता है

जटिल प्रक्षेप्य स्थान के लिए, जहां क्वांटम यांत्रिकी के संपर्क की ओर संकेत करते हुए सममित फ़ुबिनी-अध्ययन मापीय के माध्यम से सर्वोत्तम सीमा प्राप्त की जाती है। यहां रीमैनियन मैनिफोल्ड M के स्थिर 2-सिस्टोल को व्यवस्था के माध्यम से परिभाषित किया गया है:

कहाँ स्थिर मानदंड है, जबकि λ1 जाली के शून्येतर तत्व का न्यूनतम मानदंड है। ग्रोमोव की स्थिर असमानता कितनी असाधारण है, यह वर्तमान ही में स्पष्ट हुआ है। अर्थात् यह ज्ञात हुआ है कि अपेक्षा के विपरीत चतुर्धातुक प्रक्षेप्य तल पर सममित मापीय जटिल मामले में 2-सिस्टोल के विपरीत इसकी सिस्टोलिक रूप से सर्वोत्तम मापीय नहीं है। जबकि अपने सममित मापीय के साथ चतुर्धातुक प्रक्षेप्य तल का मध्य-आयामी स्थिर सिस्टोलिक अनुपात 10/3 है, जटिल प्रक्षेप्य 4-स्थान के सममित मापीय के लिए अनुरूप अनुपात 6 देता है, जबकि ऐसे अनुपात के लिए सर्वोत्तम उपलब्ध उच्चतम परिबंध होता है। इन दोनों स्थानों पर एक मनमाना मापीय 14 है। यह उपर्युक्त परिबंध लाई बीजगणित E7 (गणित) के गुणों से संबंधित है। यदि असाधारण चक्र (7) होलोनॉमी और 4-वें बेट्टी संख्या 1 के साथ 8- बहुविध मौजूद है, तो मान 14 वास्तव में सर्वोत्तम है। डोमिनिक जॉयस के माध्यम से चक्र(7) होलोनॉमी वाले बहुविध का गहन अध्ययन किया गया है।

2-सिस्टोल के लिए निम्नतर सीमा

इसी प्रकार , k=2 के साथ के-सिस्टोल के लिए एकमात्र असाधारण निम्नतर सीमा के विषय में, गेज सिद्धांत और जे-पूर्णसममितिक वक्र के हाल के काम का परिणाम है। जेक सोलोमन के माध्यम से 4-विविध कार्य के अनुरूप 2-सिस्टोल के लिए निम्नतर सीमा के अध्ययन से अवधि मानचित्र की छवि के घनत्व का एक सरलीकृत प्रमाण प्राप्त हुआ है।

शॉट्की समस्या

संभवतः सिस्टोल के सबसे उल्लेखनीय अनुप्रयोगों में से एक शॉट्की समस्या के संदर्भ में पी. बसर और पी. सरनाक के माध्यम से किया गया है, जिन्होंने मुख्य रूप से ध्रुवीकृत एबेलियन (गणित में विनिमेय समूह) विविधता के मध्य रीमैन सतह की जैकोबियन को प्रतिष्ठित किया, और सिस्टोलिक अंकगणित का आधार रखा है।

लस्टर्निक-श्निरेलमैन श्रेणी

सिस्टोलिक प्रश्न अनुरोध से अक्सर संबंधित क्षेत्रों में प्रश्नों को प्रेरित करता है। इस प्रकार, बहुविध की सिस्टोलिक श्रेणी की धारणा को परिभाषित और अवलोकन करा गया है, जो लस्टर्निक-श्निरेलमैन श्रेणी (L S श्रेणी) से संबंध प्रदर्शित करती है। विचार करे कि सिस्टोलिक श्रेणी (एवं L S श्रेणी), परिभाषा के अनुसार, एक पूर्णांक है। दोनों श्रेणियों को सतहों और 3-विविध कार्य के लिए सन्निपतित होते हुए प्रकट करा गया है। इसके अलावा, उन्मुख 4-विविध कार्य के लिए, सिस्टोलिक श्रेणी L S श्रेणी के लिए निम्नतर सीमा है। एक समय मे संबंध स्थापित हो जाने पर, प्रभाव परस्पर होता है: L S श्रेणी के विषय में ज्ञात परिणाम सिस्टोलिक प्रश्नों को उत्तेजित करते हैं, और इसके विपरीत है।

नया अपरिवर्तनीय काट्ज़ और रुड्यक के माध्यम से प्रस्तुत करा गया था (नीचे देखें)। चूंकि अपरिवर्तनीय लस्टर्निक-श्निरेलमैन श्रेणी (L S श्रेणी) से निकटता से संबंधित है, इसलिए इसे सिस्टोलिक श्रेणी कहा जाता था।

बहुविध M की सिस्टोलिक श्रेणी को M के विभिन्न के-सिस्टोल के संदर्भ में परिभाषित किया गया है। साधारणतया विचार इस प्रकार है। बहुविध M को देखते हुए, अनेक सिस्टोल के सबसे दीर्घतम परिणाम की अन्वेषण करता है जो M की कुल मात्रा के लिए वक्रता-मुक्त निम्नतर सीमा (मापीय के निरंतर स्वतंत्र के साथ) देता है। परिभाषा में M के आवरण के सिस्टोलिक अपरिवर्तनीय को भी शामिल करना स्वाभाविक है। इतने दीर्घतम परिणाम में कारकों की संख्या परिभाषा के अनुसार M की सिस्टोलिक श्रेणी है।

उदाहरण के रूप मे , मिखाइल ग्रोमोव (गणितज्ञ) ने प्रकट करा कि एक आवश्यक n- बहुविध होमोटॉपी 1-सिस्टोल की n उर्जा के संदर्भ में कम मात्रा में सीमित मात्रा को स्वीकार करता है (उपर्युक्त अनुभाग देखें)। इससे यह निष्कर्ष निकलता है कि आवश्यक n- बहुविध की सिस्टोलिक श्रेणी सम्पूर्ण रूप में n है। वास्तव में, विवृत n-विविध कार्य के लिए, L S श्रेणी और सिस्टोलिक श्रेणी दोनों का अधिकतम मान एकसाथ प्राप्त होता है।

दोनों श्रेणियों के मध्य एक दिलचस्प संबंध के अस्तित्व का एक और संकेत अपरिवर्तनीय संबंध है जिसे कपलेंथ कहा जाता है। इस प्रकार, वास्तविक कपलेंथ दोनों श्रेणियों के लिए निम्नतर सीमा बन जाती है।

कई मामलों में सिस्टोलिक श्रेणी एलएस श्रेणी से मेल खाती है, जिसमें आयाम 2 और 3 के मैनिफोल्ड का मामला भी शामिल है।

अनेक मामलों में सिस्टोलिक श्रेणी L S श्रेणी के अनुरूप होती है, जिसमें आयाम 2 और 3 के बहुविध का मामला भी शामिल है। आयाम 4 में वर्तमान ही में यह प्रकट करा गया था कि सिस्टोलिक श्रेणी L S श्रेणी के लिए निम्नतर सीमा है।

सिस्टोलिक हाइपरबोलिक ज्यामिति

हाइपरबोलिक सतहों के सिस्टोल के व्यापक श्रेणी g के लिए अनंतस्पर्शी व्यवहार के अध्ययन से कुछ दिलचस्प स्थिरांक का ज्ञात होता है। इस प्रकार, (2,3,7) अतिपरवलयिक त्रिभुज समूह के प्रमुख सर्वांगसम उपसमूहों के एक स्तंभ के माध्यम से परिभाषित हर्विट्ज़ सतह Σg सीमा को संतुष्ट करता है।

और एक समरूप सीमा अधिकतर सामान्य अंकगणितीय फ़ुचियन समूहों के लिए है। काट्ज़, शाप्स और विश्ने के माध्यम से 2007 का यह परिणाम है[3] उनके 1994 के मौलिक प्रपत्र से Q पर परिभाषित अंकगणितीय समूहों के मामले में पीटर बसर और पीटर सरनाक के परिणामों को सामान्यीकृत करता है।[4]

हाइपरबोलिक ज्यामिति में सिस्टोल के लिए एक संदर्भग्रंथ सूची में वर्तमान में चालीस लेख हैं। दिलचस्प उदाहरण बोल्ज़ा सतह, क्लेन चतुर्थक मैकबीथ सतह प्रथम हर्विट्ज़ त्रिज के माध्यम से प्रदान किए गए हैं।

हाबिल-जैकोबी मानचित्रों से संबंध

बुरगो और इवानोव की तकनीकों के अनुप्रयोग के रूप में सर्वोत्तम सिस्टोलिक असमानताओं का एक परिवार प्राप्त किया जाता है, जो उपयुक्त एबेल-जैकोबी मानचित्रों का उपयोग करता है, जिसे निम्नानुसार परिभाषित किया गया है।

मान लीजिए M एक बहुविध है, π = π1(एम), इसका मौलिक समूह और एफ: π → πabइसके आबेलियनाइजेशन मानचित्र बनें। मान लीजिए कि tor π का ​​मरोड़ उपसमूह हैab. Let g: πab → πab/tor मरोड़ के माध्यम से भागफल हो। स्पष्टतः, πअब</सुप>/तोर= 'ज़'बी, जिस स्थान पर बी = बी1 (एम)। मान लीजिए φ: π → 'Z'बीरचित समरूपता हो।

<ब्लॉककोट>'परिभाषा:' आवरण उपसमूह Ker(φ) ⊂ π के संगत बहुविध M को सार्वभौमिक (या अधिकतम) मुक्त एबेलियन आवरण कहा जाता है।

अब मान लें कि एम के पास रीमैनियन मापीय है। मान लीजिए कि E, M पर हार्मोनिक 1-रूपों का स्थान है, जिसमें दोहरे E* को H के साथ प्रामाणिक रूप से समरूपताा जाता है1(श्री')। बेसपॉइंट x से पथों के साथ एक इंटीग्रल हार्मोनिक 1-फॉर्म को एकीकृत करके0 ∈ एम, हमें वृत्त 'आर'/'जेड' = 'एस' का एक नक्शा मिलता है1.

इसी प्रकार, मानचित्र को परिभाषित करने के लिए M → H1(एम,'आर')/एच1(एम,'जेड')R सहसंगति के लिए कोई आधार चुने बिना, हम इस प्रकार तर्क देते हैं। माना x सार्वभौमिक आवरण में एक बिंदु है एम का। इस प्रकार X को X से पथ सी के साथ एम के एक बिंदु के माध्यम से दर्शाया गया है0 इसे. पथ c के साथ एकीकृत करके, हम एक रैखिक रूप प्राप्त करते हैं, , एक बार। इस प्रकार हमें एक मानचित्र प्राप्त होता है , जो, इसके अलावा, एक मानचित्र पर उतरता है

कहाँ यूनिवर्सल फ्री एबेलियन कवर है।

<ब्लॉककोट>परिभाषा: एम की जैकोबी किस्म (जैकोबी टोरस) टोरस जे है1(एम)= एच1(एम,'आर')/एच1(एम,'जेड')R</ब्लॉककोट>

<ब्लॉककोट>परिभाषा: हाबिल-जैकोबी मानचित्र उपरोक्त मानचित्र से भागफल को पास करके प्राप्त किया जाता है। एबेल-जैकोबी मानचित्र जैकोबी टोरस के अनुवादों तक अद्वितीय है।

उदाहरण के तौर पर डी. बुरागो, एस. इवानोव और मिखाइल ग्रोमोव (गणितज्ञ)|एम के कारण निम्नलिखित असमानता का हवाला दिया जा सकता है। ग्रोमोव।

मान लीजिए कि M पहले बेट्टी संख्या n के साथ एक n-आयामी रीमैनियन बहुविध है, जैसे कि M से इसके जैकोबी टोरस तक के मानचित्र में नॉनज़रो डिग्री (निरंतर मानचित्र) है। तब एम सर्वोत्तम स्थिर सिस्टोलिक असमानता को संतुष्ट करता है

कहाँ शास्त्रीय हर्मिट स्थिरांक है।

संबंधित फ़ील्ड, वॉल्यूम एन्ट्रापी

व्यापक जीनस की सतहों के सिस्टोल के लिए अनंतस्पर्शी घटनाओं को दिलचस्प ऊर्जापंथी घटनाओं और अंकगणित समूहों के सर्वांगसम उपसमूहों के गुणों से संबंधित प्रकट करा गया है।

होमोटॉपी सिस्टोल के लिए ग्रोमोव की 1983 की असमानता, विशेष रूप से, इसके सिस्टोल के संदर्भ में एक गोलाकार सतह के क्षेत्र के लिए एक समान निम्नतर सीमा का तात्पर्य है। इस प्रकार की सीमा लोवनर और पु की असमानताओं को सामान्यीकृत करती है, भले ही गैर-सर्वोत्तम फैशन में।

ग्रोमोव के मौलिक 1983 पेपर में सिस्टोल और क्षेत्र से संबंधित एसिम्प्टोटिक सीमाएँ भी शामिल हैं, जो समान सीमा (समस्त आयामों में मान्य) में सुधार करती हैं।

यह वर्तमान ही में खोजा गया था (नीचे काट्ज़ और सबौरौ के माध्यम से पेपर देखें) कि वॉल्यूम एन्ट्रॉपी एच, एच के लिए ए कटोक की सर्वोत्तम असमानता के साथ, सतहों के सिस्टोलिक अनुपात के लिए एम ग्रोमोव की एसिम्प्टोटिक बाध्यता के पारदर्शी प्रमाण में सही मध्यस्थ है बड़ी जाति.

ए कटोक के शास्त्रीय परिणाम में कहा गया है कि नकारात्मक यूलर विशेषता के साथ एक विवृत सतह एम पर प्रत्येक मापीय एन्ट्रापी और क्षेत्र से संबंधित एक सर्वोत्तम असमानता को संतुष्ट करता है।

यह पता चला है कि एक विवृत सतह की न्यूनतम एन्ट्रापी उसके सर्वोत्तम सिस्टोलिक अनुपात से संबंधित हो सकती है। अर्थात्, सिस्टोलिक रूप से चरम सतह की एन्ट्रापी के लिए उसके सिस्टोल के संदर्भ में एक उपर्युक्त ी सीमा होती है। आयतन के संदर्भ में कटोक की सर्वोत्तम निम्नतर सीमा के साथ इस उपर्युक्त ी सीमा को जोड़कर, व्यापक जीनस की सतहों के सर्वोत्तम सिस्टोलिक अनुपात के लिए ग्रोमोव के एसिम्प्टोटिक अनुमान का एक सरल वैकल्पिक प्रमाण प्राप्त होता है। इसके अलावा, इस प्रकार का दृष्टिकोण ग्रोमोव के प्रमेय में एक बेहतर गुणक स्थिरांक उत्पन्न करता है।

एक अनुप्रयोग के रूप में, इस पद्धति का तात्पर्य है कि जीनस की सतह पर प्रत्येक मापीय कम से कम 20 लोवेनर की टोरस असमानता को संतुष्ट करता है। यह 50 के सर्वोत्तम पूर्व अनुमान में सुधार करता है जो ग्रोमोव के अनुमान से लिया गया था।

भरण क्षेत्र अनुमान

ग्रोमोव के भरण क्षेत्र अनुमान को हाइपरलिप्टिक सेटिंग में सिद्ध किया गया है (नीचे बैंगर्ट एट अल के माध्यम से संदर्भ देखें)।

भराव क्षेत्र अनुमान का दावा है कि दृढ़ता से सममितीय संपत्ति के साथ एक सतह के माध्यम से लंबाई 2π के रीमैनियन सर्कल के समस्त संभावित भरावों में से, गोल गोलार्ध में सबसे कम क्षेत्र होता है। यहां रीमैनियन सर्कल कुल 1-वॉल्यूम 2π और रीमैनियन व्यास π के अद्वितीय विवृत 1-आयामी रीमैनियन बहुविध को संदर्भित करता है।

अनुमान को समझाने के लिए, हम इस अवलोकन से शुरू करते हैं कि इकाई 2-गोले का भूमध्यरेखीय वृत्त, एस2⊂ आर3, एक रीमैनियन सर्कल एस है1लंबाई 2π और व्यास π का।

अधिक सटीक रूप से, एस का रीमैनियन दूरी फ़ंक्शन1गोले पर व्यापक रीमैनियन दूरी का प्रतिबंध है। यह संपत्ति यूक्लिडियन विमान में यूनिट सर्कल के मानक एम्बेडिंग से संतुष्ट नहीं है, जिस स्थान पर विपरीत बिंदुओं की एक जोड़ी दूरी 2 पर है, π नहीं।

हम 'एस' की समस्त फिलिंग्स पर विचार करते हैं1एक सतह के माध्यम से , जैसे कि सतह की सीमा के रूप में वृत्त को शामिल करने से परिभाषित प्रतिबंधित मापीय 2π लंबाई के एक वृत्त का रीमैनियन मापीय है। वृत्त को सीमा के रूप में शामिल करने को वृत्त का दृढ़तापूर्वक सममितीय अंतर्विरोध कहा जाता है।

1983 में ग्रोमोव ने अनुमान लगाया कि गोल गोलार्ध समस्त भरने वाली सतहों के मध्य वृत्त को भरने का सबसे अच्छा तरीका देता है।

सरलता से जुड़ी फिलिंग का मामला पु की असमानता के बराबर है। वर्तमान ही में जीनस (गणित)-1 भरने के मामले को भी सकारात्मक रूप से निपटाया गया था (नीचे बैंगर्ट एट अल के माध्यम से संदर्भ देखें)। अर्थात्, यह पता चलता है कि कोई व्यक्ति अभिन्न ज्यामिति से जे. हर्श के आधी सदी पुराने सूत्र का उपयोग कर सकता है। अर्थात्, भूमध्य रेखा पर स्व-प्रतिच्छेदन बिंदु के साथ, फ़ुटबॉल पर चित्र-8 चक्र के परिवार पर विचार करें (लेख की शुरुआत में चित्र देखें)। हर्श का सूत्र फुटबॉल के अनुरूप वर्ग में एक मापीय के क्षेत्र को परिवार से आकृति -8 चक्र की ऊर्जा के औसत के रूप में व्यक्त करता है। रीमैन सतह के हाइपरलिप्टिक भागफल पर हर्श के सूत्र का अनुप्रयोग इस मामले में भरने वाले क्षेत्र अनुमान को साबित करता है।

जीनस 2 में हाइपरलिप्टिक वक्र के अन्य सिस्टोलिक प्रभावों की समरूपता की गई है।

सर्वेक्षण

क्षेत्र के सर्वेक्षणों में एम. बर्जर का सर्वेक्षण (1993), ग्रोमोव का सर्वेक्षण (1996), ग्रोमोव की पुस्तक (1999), बर्जर की पैनोरमिक पुस्तक (2003), साथ ही काट्ज़ की पुस्तक (2007) शामिल हैं। ये संदर्भ किसी शुरुआती को इस क्षेत्र में प्रवेश करने में मदद कर सकते हैं। उनमें काम करने के लिए खुली समस्याएं भी होती हैं।

यह भी देखें

टिप्पणियाँ

  1. Tutte, William T. (1947). "घनाकार रेखांकन का एक परिवार". Proc. Cambridge Philos. Soc. 43 (4): 459–474. Bibcode:1947PCPS...43..459T. doi:10.1017/S0305004100023720. MR 0021678. S2CID 123505185.
  2. Guth, Larry (2011). "बड़े रीमैनियन मैनिफोल्ड्स में गेंदों की मात्रा". Annals of Mathematics. 173 (1): 51–76. arXiv:math/0610212. doi:10.4007/annals.2011.173.1.2. MR 2753599. S2CID 1392012.
  3. Katz, Mikhail G.; Schaps, Mary; Vishne, Uzi (2007). "Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups". Journal of Differential Geometry. 76 (3): 399–422. arXiv:math.DG/0505007. doi:10.4310/jdg/1180135693.
  4. Buser, P.; Sarnak, P. (1994). "On the period matrix of a Riemann surface of large genus (with an Appendix by J.H. Conway and N.J.A. Sloane)". Inventiones Mathematicae. 117 (1): 27–56. doi:10.1007/BF01232233. ISSN 0020-9910. S2CID 116904696.


संदर्भ


बाहरी संबंध

Template:Systolic geometry navbox