अंकगणितीय औसत

From Vigyanwiki
Revision as of 09:46, 2 October 2023 by alpha>Jyotis

गणित और सांख्यिकी में, अंकगणितीय माध्य ( /ˌærɪθˈmɛtɪk ˈmn/ arr-ith-MET-ik), अंकगणितीय औसत, या केवल माध्य या औसत (जब संदर्भ स्पष्ट हो), संग्रह में संख्याओं की संख्या से विभाजित संख्याओं के संग्रह का योग है।[1] संग्रह अक्सर एक प्रयोग, एक अवलोकन संबंधी अध्ययन, या एक सर्वेक्षण (सांख्यिकी) से परिणामों का एक सेट होता है। अंकगणित माध्य शब्द को कुछ गणित और सांख्यिकी संदर्भों में पसंद किया जाता है क्योंकि यह इसे अन्य प्रकार के साधनों से अलग करने में मदद करता है, जैसे कि ज्यामितीय माध्य और अनुकूल माध्य

गणित और सांख्यिकी के अलावा, अंकगणित माध्य अक्सर अर्थशास्त्र, नृविज्ञान, इतिहास और लगभग हर शैक्षणिक क्षेत्र में कुछ हद तक उपयोग किया जाता है। उदाहरण के लिए, प्रति व्यक्ति आय किसी देश की जनसंख्या की अंकगणितीय औसत आय है।

जबकि अंकगणित माध्य का उपयोग अक्सर केंद्रीय प्रवृत्ति की रिपोर्ट करने के लिए किया जाता है, यह एक मजबूत आँकड़ा नहीं है: यह ग़ैर से बहुत प्रभावित होता है (अधिकांश अन्य की तुलना में बहुत बड़ा या छोटा मान)। विषम वितरण के लिए, जैसे कि आय का वितरण जिसके लिए कुछ लोगों की आय अधिकांश लोगों की तुलना में काफी अधिक है, अंकगणितीय माध्य मध्य की धारणा के साथ मेल नहीं खा सकता है। उस स्थिति में, मजबूत आँकड़े, जैसे माध्यिका, केंद्रीय प्रवृत्ति का बेहतर विवरण प्रदान कर सकते हैं।

परिभाषा

एक डेटा सेट दिया , अंकगणितीय माध्य (माध्य या औसत भी), निरूपित (पढ़ना बार), का माध्य है मान .[2] अंकगणित माध्य एक डेटा सेट का सबसे अधिक इस्तेमाल किया जाने वाला और केंद्रीय प्रवृत्ति का आसानी से समझा जाने वाला उपाय है। सांख्यिकी में, औसत शब्द केंद्रीय प्रवृत्ति के किसी भी माप को संदर्भित करता है। अवलोकन किए गए डेटा के एक सेट का अंकगणितीय माध्य प्रत्येक अवलोकन के संख्यात्मक मानों के योग के बराबर होता है, जो टिप्पणियों की कुल संख्या से विभाजित होता है। सांकेतिक रूप से, मूल्यों से युक्त डेटा सेट के लिए , अंकगणितीय माध्य सूत्र द्वारा परिभाषित किया गया है:

[3]

(योग ऑपरेटर की व्याख्या के लिए, समेशन देखें।)

उदाहरण के लिए, यदि मासिक वेतन कर्मचारी हैं , तो अंकगणितीय माध्य है:

यदि डेटा सेट एक सांख्यिकीय जनसंख्या है (अर्थात, इसमें हर संभव अवलोकन शामिल है और न केवल उनका एक उपसमुच्चय), तो उस जनसंख्या के माध्य को जनसंख्या माध्य कहा जाता है और इसे ग्रीक वर्णमाला द्वारा निरूपित किया जाता है। . यदि डेटा सेट एक नमूनाकरण (सांख्यिकी) (जनसंख्या का एक सबसेट) है, तो इसे नमूना माध्य कहा जाता है (जो डेटा सेट के लिए के रूप में दर्शाया गया है ).

अंकगणित माध्य को समान रूप से सदिश (गणित और भौतिकी) के लिए कई आयामों में परिभाषित किया जा सकता है, न कि केवल अदिश (गणित) मान; इसे अक्सर केन्द्रक के रूप में जाना जाता है। अधिक आम तौर पर, क्योंकि अंकगणितीय माध्य एक उत्तल संयोजन है (अर्थात् इसके गुणांकों का योग है ), इसे उत्तल स्थान पर परिभाषित किया जा सकता है, न कि केवल सदिश स्थान पर।

प्रेरक गुण

अंकगणितीय माध्य में कई गुण होते हैं जो इसे दिलचस्प बनाते हैं, विशेष रूप से केंद्रीय प्रवृत्ति के माप के रूप में। इसमे शामिल है:

  • यदि अंक मतलब है , तब . तब से किसी दी गई संख्या से माध्य की दूरी है, इस गुण की व्याख्या करने का एक तरीका यह है कि माध्य के बाईं ओर की संख्या को दाईं ओर की संख्या द्वारा संतुलित किया जाता है। माध्य ही एकमात्र ऐसी संख्या है जिसके लिए आंकड़ों में त्रुटियां और अवशेष (अनुमान से विचलन) का योग शून्य होता है। इसे यह कहते हुए भी व्याख्यायित किया जा सकता है कि मतलब किसी भी वास्तविक संख्या के अर्थ में अनुवादिक समरूपता है , .
  • यदि ज्ञात संख्याओं के एक सेट के लिए एक विशिष्ट मान के रूप में एकल संख्या का उपयोग करना आवश्यक है , तो संख्याओं का अंकगणितीय माध्य यह सबसे अच्छा करता है क्योंकि यह विशिष्ट मान से वर्ग विचलन के योग को कम करता है: का योग . नमूना माध्य भी सबसे अच्छा एकल भविष्यवक्ता है क्योंकि इसमें सबसे कम मूल माध्य चुकता त्रुटि है।[2]यदि संख्याओं की जनसंख्या का अंकगणितीय माध्य वांछित है, तो इसका अनुमान जो कि निष्पक्ष अनुमान है, जनसंख्या से निकाले गए नमूने का अंकगणितीय माध्य है।
  • अंकगणित माध्य माप की इकाइयों के पैमाने से स्वतंत्र है, इस अर्थ में कि इसलिए, उदाहरण के लिए, लीटर के माध्य की गणना करना और फिर गैलन में बदलना वैसा ही है जैसे पहले गैलन में बदलना और फिर माध्य की गणना करना। इसे सजातीय कार्य भी कहा जाता है।

अतिरिक्त गुण

  • किसी नमूने का अंकगणितीय माध्य हमेशा उस नमूने के सबसे बड़े और सबसे छोटे मानों के बीच होता है।
  • समान आकार के संख्या समूहों की किसी भी राशि का अंकगणितीय माध्य प्रत्येक समूह के अंकगणितीय माध्य का अंकगणितीय माध्य है।

माध्यिका के साथ तुलना करें

अंकगणित माध्य की तुलना माध्यिका से की जा सकती है। माध्यिका को इस प्रकार परिभाषित किया गया है कि आधे से अधिक मान बड़े नहीं हैं, और आधे से अधिक इससे छोटे नहीं हैं। यदि अंकगणितीय प्रगति में तत्वों को किसी क्रम में रखा जाता है, तो माध्यिका और अंकगणितीय औसत बराबर होते हैं। उदाहरण के लिए, डेटा नमूना पर विचार करें . मतलब है , जैसा कि माध्यिका है। हालाँकि, जब हम एक ऐसे नमूने पर विचार करते हैं जिसे अंकगणितीय रूप से बढ़ाने के लिए व्यवस्थित नहीं किया जा सकता है, जैसे , माध्यिका और अंकगणितीय औसत महत्वपूर्ण रूप से भिन्न हो सकते हैं। इस मामले में, अंकगणितीय औसत है , जबकि माध्यिका है . नमूने में अधिकांश मूल्यों से औसत मूल्य काफी भिन्न हो सकता है और अधिक से अधिक बड़ा या छोटा हो सकता है।

कई क्षेत्रों में इस घटना के अनुप्रयोग हैं। उदाहरण के लिए, 1980 के दशक के बाद से, संयुक्त राज्य में औसत आय आय के अंकगणितीय औसत की तुलना में धीमी गति से बढ़ी है।[4]

सामान्यीकरण

भारित औसत

एक भारित औसत, या भारित माध्य, एक औसत है जिसमें कुछ डेटा अंक दूसरों की तुलना में अधिक महत्वपूर्ण होते हैं क्योंकि उन्हें गणना में अधिक वजन दिया जाता है।[5] उदाहरण के लिए, का अंकगणितीय माध्य और है , या समकक्ष . इसके विपरीत, एक भारित माध्य जिसमें पहली संख्या प्राप्त होती है, उदाहरण के लिए, दूसरे से दोगुना वजन (शायद इसलिए कि यह सामान्य आबादी में दो बार दिखाई देने वाला माना जाता है जिससे इन नंबरों का नमूना लिया गया था) की गणना की जाएगी . यहाँ भार, जिनका योग आवश्यक रूप से एक है, हैं और , पूर्व दो बार उत्तरार्द्ध है। अंकगणित माध्य (कभी-कभी भारित औसत या समान भारित औसत कहा जाता है) को भारित औसत के एक विशेष मामले के रूप में व्याख्या किया जा सकता है जिसमें सभी भार एक ही संख्या के बराबर होते हैं ( उपरोक्त उदाहरण में और के साथ स्थिति में संख्याओं का औसत निकाला जा रहा है)।

सतत संभाव्यता वितरण

दो लॉग-सामान्य वितरण की तुलना समान माध्यिका के साथ, लेकिन अलग-अलग तिरछापन, जिसके परिणामस्वरूप विभिन्न साधन और मोड (आँकड़े) होते हैं

यदि कोई संख्यात्मक गुण, और उससे प्राप्त डेटा का कोई भी नमूना, उदाहरण के लिए, केवल पूर्णांकों के बजाय एक निरंतर श्रेणी से कोई भी मान ले सकता है, तो किसी संख्या के संभावित मानों की किसी सीमा में गिरने की संभावना को एकीकृत करके वर्णित किया जा सकता है। इस श्रेणी में निरंतर संभाव्यता वितरण, तब भी जब एक नमूना संख्या के लिए असीम रूप से कई से एक निश्चित मान लेने की सहज संभावना शून्य है। इस संदर्भ में, एक भारित औसत का एनालॉग, जिसमें प्रत्येक श्रेणी में चर के सटीक मान के लिए अपरिमित रूप से कई संभावनाएँ होती हैं, संभाव्यता बंटन का माध्य कहलाता है। सबसे व्यापक रूप से सामना किए जाने वाले संभाव्यता वितरण को सामान्य वितरण कहा जाता है; इसकी संपत्ति है कि इसकी केंद्रीय प्रवृत्ति के सभी उपाय, न केवल माध्य बल्कि ऊपर वर्णित माध्यिका और मोड (तीन एमएस)[6]), बराबर हैं। यह समानता अन्य संभाव्यता वितरणों के लिए नहीं है, जैसा कि यहां लॉग-सामान्य वितरण के लिए सचित्र है।

कोण

चरण या कोण जैसे चक्रीय डेटा का उपयोग करते समय विशेष देखभाल की आवश्यकता होती है। 1° और 359° का अंकगणितीय माध्य लेने पर 180° (कोण)|° का परिणाम प्राप्त होता है। यह दो कारणों से गलत है:

  • सबसे पहले, कोण माप केवल 360° ( या , अगर कांति में माप रहे हैं)। इस प्रकार, इन्हें आसानी से 1° और -1°, या 361° और 719° कहा जा सकता है, क्योंकि इनमें से प्रत्येक एक भिन्न औसत उत्पन्न करता है।
  • दूसरी बात, इस स्थिति में, 0° (या 360°) ज्यामितीय रूप से एक बेहतर औसत मान है: इसके बारे में कम सांख्यिकीय फैलाव है (अंक इससे 1° और 180° से 179°, ख्यात औसत दोनों हैं)।

सामान्य अनुप्रयोग में, इस तरह के निरीक्षण से औसत मूल्य कृत्रिम रूप से संख्यात्मक सीमा के मध्य की ओर बढ़ जाएगा। इस समस्या का समाधान अनुकूलन फॉर्मूलेशन का उपयोग करना है (यानी, मध्य बिंदु के रूप में मतलब को परिभाषित करें: वह बिंदु जिसके बारे में सबसे कम फैलाव है) और अंतर को मॉड्यूलर दूरी (यानी सर्कल पर दूरी) के रूप में फिर से परिभाषित करें: इसलिए 1° और 359° के बीच की मॉड्यूलर दूरी 2° है, 358° नहीं)।

Proof without words of the inequality of arithmetic and geometric means:
is the diameter of a circle centered on ; its radius is the arithmetic mean of and . Using the geometric mean theorem, triangle 's altitude is the geometric mean. For any ratio , .

प्रतीक और एन्कोडिंग

अंकगणित माध्य को अक्सर एक बार (विंकुलम (प्रतीक) या मैक्रोन (विशेषक)) द्वारा निरूपित किया जाता है, जैसा कि .[2]

कुछ सॉफ़्टवेयर (टेक्स्ट प्रोसेसिंग, वेब ब्राउज़र) x̄ प्रतीक को सही ढंग से प्रदर्शित नहीं कर सकते हैं। उदाहरण के लिए, HTML प्रतीक x̄ दो कोडों को जोड़ता है - आधार अक्षर x प्लस उपरोक्त पंक्ति के लिए एक कोड (̄ या ¯)।[7] कुछ दस्तावेज़ स्वरूपों (जैसे पीडीएफ) में, माइक्रोसॉफ्ट वर्ड जैसे टेक्स्ट प्रोसेसर में कॉपी किए जाने पर प्रतीक को ¢ (यूरो सिक्के) प्रतीक द्वारा प्रतिस्थापित किया जा सकता है।

यह भी देखें

Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b [8]

संदर्भ

  1. Jacobs, Harold R. (1994). Mathematics: A Human Endeavor (Third ed.). W. H. Freeman. p. 547. ISBN 0-7167-2426-X.
  2. 2.0 2.1 2.2 Medhi, Jyotiprasad (1992). Statistical Methods: An Introductory Text. New Age International. pp. 53–58. ISBN 9788122404197.
  3. Weisstein, Eric W. "अंकगणित औसत". mathworld.wolfram.com (in English). Retrieved 2020-08-21.
  4. Krugman, Paul (4 June 2014) [Fall 1992]. "The Rich, the Right, and the Facts: Deconstructing the Income Distribution Debate". The American Prospect.
  5. "Mean | mathematics". Encyclopedia Britannica (in English). Retrieved 2020-08-21.
  6. Thinkmap Visual Thesaurus (2010-06-30). "The Three M's of Statistics: Mode, Median, Mean June 30, 2010". www.visualthesaurus.com. Retrieved 2018-12-03.
  7. "स्टेट सिंबल के लिए यूनिकोड पर नोट्स". www.personal.psu.edu. Retrieved 2018-10-14.
  8. If AC = a and BC = b. OC = AM of a and b, and radius r = QO = OG.
    Using Pythagoras' theorem, QC² = QO² + OC² ∴ QC = √QO² + OC² = QM.
    Using Pythagoras' theorem, OC² = OG² + GC² ∴ GC = √OC² − OG² = GM.
    Using similar triangles, HC/GC = GC/OC ∴ HC = GC²/OC = HM.

अग्रिम पठन

बाहरी संबंध