संवृद्धिधत तेल की पुनर्प्राप्ति

From Vigyanwiki
Revision as of 21:54, 10 October 2023 by Indicwiki (talk | contribs) (23 revisions imported from alpha:संवृद्धिधत_तेल_की_पुनर्प्राप्ति)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
अच्छे तेल पुनर्प्राप्ति के लिए अंतःक्षेपण का अच्छे प्रकार से से उपयोग किया जाता है

संवृद्धिधत तेल पुनर्प्राप्ति (संक्षिप्त ईओआर), जिसे तृतीयक पुनर्प्राप्ति भी कहा जाता है, तेल क्षेत्र से कच्चे तेल का निष्कर्षण है जिसे अन्यथा नहीं निकाला जा सकता है। यद्यपि प्राथमिक और द्वितीयक पुनर्प्राप्ति प्रविधि सतह और भूमिगत कुएं के बीच दाब के अंतर पर निर्भर करती हैं, लेकिन तेल निकालने को आसान बनाने के लिए तेल की रासायनिक संरचना में परिवर्तन करके तेल पुनर्प्राप्ति कार्यों को बढ़ाया जाता है। ईओआर किसी जलाशय का [1] प्राथमिक पुनर्प्राप्ति और माध्यमिक पुनर्प्राप्ति का उपयोग करके 20% से 40% की तुलना में 30% से 60% या अधिक तेल निकाल सकता है।[2][3] अमेरिकी ऊर्जा विभाग के अनुसार, कार्बन डाईऑक्साइड और जल को तीन ईओआर विधियों उष्मीय अंतःक्षेपण, गैस अंतःक्षेपण और रासायनिक अंतःक्षेपण में से एक के साथ अंतःक्षेपित किया जाता है।[1] अधिक उन्नत, परिकल्पित ईओआर प्रविधियो को कभी-कभी चतुर्धातुक पुनर्प्राप्ति कहा जाता है।[4][5][6][7]


प्रकार

ईओआर की तीन प्राथमिक प्रविधियां: गैस अंतःक्षेपण, उष्मीय अंतःक्षेपण और रासायनिक अंतःक्षेपण होती हैं। गैस अंतःक्षेपण, जो प्राकृतिक गैस, नाइट्रोजन, या कार्बन डाइऑक्साइड (CO2) जैसी गैसों का उपयोग करता है, जो की संयुक्त राज्य अमेरिका में ईओआर उत्पादन का लगभग 60 प्रतिशत भाग है।[1] उष्मीय अंतःक्षेपण, जिसमें गर्मी का प्रारम्भ सम्मिलित है, संयुक्त राज्य अमेरिका में ईओआर उत्पादन का 40 प्रतिशत भाग है, जिसमें से अधिकांश कैलिफोर्निया में होता है।[1]रासायनिक अंतःक्षेपण, जिसमें जलप्रलय की प्रभावशीलता को बढ़ाने के लिएपॉलीमर नामक लंबी श्रृंखला वाले अणुओं का उपयोग सम्मिलित हो सकता है, संयुक्त राज्य अमेरिका में ईओआर उत्पादन का लगभग एक प्रतिशत है।[1]2013 में, प्लाज्मा-पल्स प्रविधि नामक एक प्रविधि को रूस से संयुक्त राज्य अमेरिका में प्रदर्शित किया गया था। इस प्रविधि के परिणामस्वरूप वर्तमान में उपस्थित कुओं के उत्पादन में 50 प्रतिशत का और अधिक सुधार हो सकता है।[8]


गैस इंजेक्शन

गैस इंजेक्शन (गैस अन्तःक्षेपण) या मिश्रणीय बाढ़ वर्तमान में बढ़ी हुई तेल पुनःप्राप्ति में सबसे अधिक प्रयोग किया जाने वाली विधि हैं। मिश्रणीय बाढ़ अंतःक्षेपण प्रक्रियाओं के लिए एक सामान्य शब्द है जो जलाशय में मिश्रणीय गैसों को प्रदर्शित करती है। मिश्रणीय विस्थापन प्रक्रिया जलाशय के दाब को बनाए रखती है और तेल विस्थापन में सुधार करती है क्योंकि तेल और गैस के बीच अंतरापृष्ठीय तनाव कम हो जाता है। इसका तात्पर्य दो परस्पर क्रिया करने वाले तरल पदार्थों के बीच अंतरापृष्ठ को हटाने से है। यह कुल विस्थापन दक्षता की अनुमति देता है।[9] प्रयुक्त गैसों में CO2, प्राकृतिक गैस या नाइट्रोजन सम्मिलित होता हैं। मिश्रणीय विस्थापन के लिए सबसे अधिक उपयोग किया जाने वाला तरल पदार्थ कार्बन डाइऑक्साइड है क्योंकि यह तेल की श्यानता को कम करता है और तरलीकृत पेट्रोलियम गैस की तुलना में कम महंगा है।[9] कार्बन डाइऑक्साइड के अन्तःक्षेपण द्वारा तेल विस्थापन उस गैस और कच्चे तेल के मिश्रण के अवस्था गतिविधि पर निर्भर करता है, जो जलाशय के तापमान, दाब और कच्चे तेल की संरचना पर दृढ़ता से निर्भर होता है।

उष्मीय अंतःक्षेपण

भाप अधिसिंचन प्रविधि

इस दृष्टिकोण में, कच्चे तेल की श्यानता को कम करने और/या तेल के भाग को वाष्पीकृत करने और इस प्रकार गतिशीलता अनुपात को कम करने के लिए कच्चे तेल को गर्म करने के लिए विभिन्न विधियों का उपयोग किया जाता है। बढ़ी हुई ऊष्मा से सतह का तनाव कम हो जाता है और तेल की पारगम्यता बढ़ जाती है। गर्म किया गया तेल भी वाष्पित हो सकता है और फिर संघनित होकर अधिक अच्छा तेल बना सकता है। विधियों में भाप अंतःक्षेपण (तेल उद्योग), भाप बाढ़ और दहन सम्मिलित हैं। ये विधियां प्रसार की दक्षता और विस्थापन दक्षता में सुधार करती हैं। भाप अंतःक्षेपण का उपयोग 1960 के दशक से कैलिफोर्निया के खेतों में व्यावसायिक रूप से किया जाता रहा है।[10] 2011 में कैलिफोर्निया और ओमान में सौर तापीय संवृद्धिधत तेल पुनर्प्राप्ति परियोजनाएं प्रारम्भ की गईं, यह विधि उष्मीय ईओआर के समान है लेकिन भाप का उत्पादन करने के लिए सौर सरणी का उपयोग करती है।

जुलाई 2015 में, पेट्रोलियम विकास ओमान और ग्लासप्वाइंट सोलर ने घोषणा की कि उन्होंने अमल तेल क्षेत्र पर 1 गीगावॉट सौर क्षेत्र बनाने के लिए $600 मिलियन के समझौते पर हस्ताक्षर किए हैं। मीराह नाम की यह परियोजना चरम तापीय क्षमता द्वारा मापा गया दुनिया का सबसे बड़ा सौर क्षेत्र होने वाला हैं।

नवंबर 2017 में, ग्लासप्वाइंट और पेट्रोलियम डेवलपमेंट ओमान (पीडीओ) ने मीरा सौर संयंत्र के प्रथम विभाग पर निर्धारित समय और बजट पर सुरक्षित रूप से निर्माण पूरा किया, और अमल वेस्ट तेल क्षेत्र में सफलतापूर्वक भाप पहुंचाई हैं।[11]

इसके अतिरिक्त नवंबर 2017 में, ग्लासपॉइंट और ऐरा एनर्जी ने कैलिफोर्निया के बेकर्सफील्ड के पास साउथ बेल्रिज ऑयल फील्ड में कैलिफोर्निया का सबसे बड़ा सौर ईओआर क्षेत्र बनाने के लिए संयुक्त परियोजना की घोषणा की। इस सुविधा में 850MW उष्मीय सौर भाप उत्पादक के माध्यम से प्रति वर्ष लगभग 12 मिलियन बैरल भाप का उत्पादन करने का अनुमान है। इससे सुविधा से प्रति वर्ष 376,000 मीट्रिक टन कार्बन उत्सर्जन में भी कटौती होती हैं।[12]


भाप अधिसिंचन  

भाप अधिसिंचन (स्केच देखें) जल के अंतःक्षेपण के समान प्रतिरूप के साथ कुएं में भाप पंप करके जलाशय में ऊष्मा उत्त्पन करने का साधन है।[13] अंततः भाप संघनित होकर गर्म जल बन जाती है; भाप क्षेत्र में तेल वाष्पित हो जाता है, और गर्म जल क्षेत्र में तेल फैलता है। परिणामस्वरूप, तेल प्रसारित हो जाता हैं, श्यानता कम हो जाती है और पारगम्यता बढ़ जाती है। सफलता सुनिश्चित करने के लिए प्रक्रिया को चक्रीय होना होता हैं। यह आज उपयोग में आने वाला प्रमुख संवर्धित तेल पुनर्प्राप्ति कार्यक्रम है।

  • सौर तापीय संवृद्धिधत तेल पुनर्प्राप्ति भाप बाढ़ का रूप है जो जल को गर्म करने और भाप उत्पन्न करने के लिए सूर्य की ऊर्जा को केंद्रित करने के लिए सौर ऊर्जा का उपयोग करता है। सौर ईओआर तेल उद्योग के लिए गैस से चलने वाले भाप उत्पादन का व्यवहार्य विकल्प सिद्ध हो रहा है।
सौर संवर्धित तेल पुनर्प्राप्ति स्थल

अग्नि अधिसिंचन  

तेल संतृप्ति और सरंध्रता अधिक होने पर अग्नि अधिसिंचन सबसे अच्छा कार्य करती है। दहन जलाशय के भीतर ही ऊष्मा उत्पन्न करता है। उच्च ऑक्सीजन सामग्री के साथ हवा या अन्य गैस मिश्रण का निरंतर अंतःक्षेपण लौ को बनाए रखता हैं। जैसे ही अग्नि जलती है, यह जलाशय के माध्यम से उत्पादन कुओं की ओर बढ़ती है। अग्नि से निकलने वाली ऊष्मा तेल की श्यानता को कम करती है और जलाशय के जल को भाप में बदलने में सहायता करती है। भाप, गर्म जल, दहन गैस और आसुत विलायक का तट अग्नि के सामने तेल को उत्पादन कुओं की ओर ले जाने का कार्य करता है।[14]

दहन की तीन विधियाँ: शुष्क अग्रवर्ती, पीछे और नमी युक्त दहन हैं। शुष्क अग्रवर्ती तेल में अग्नि लगाने के लिए इग्नाइटर का उपयोग करता है। जैसे-जैसे अग्नि बढ़ती है, तेल को अग्नि से दूर उत्पादन कुएं की ओर धक्का दे दिया दिया जाता है। इसके विपरीत वायु का अंतःक्षेपण और प्रज्वलन विपरीत दिशाओं से होता है। नमी युक्त दहन में जल को सामने के ठीक पीछे अंतःक्षेपित किया जाता है और गर्म चट्टान द्वारा भाप में बदल दिया जाता है। इससे अग्नि बुझ जाती है और ऊष्मा अधिक समान रूप से फैलती है।

रासायनिक अंतःक्षेपण

गतिशीलता और पृष्ठ तनाव को कम करने में सहायता के लिए विभिन्न रसायनों के अंतःक्षेपण, का साधारणतया तनु विलयन के रूप में उपयोग किया गया है। तेल के जलाशयों में क्षारीय या संक्षारक पदार्थ के घोल का अंतःक्षेपण जिसमें तेल में प्राकृतिक रूप से पाए जाने वाले कार्बनिक अम्ल होते हैं, परिणामस्वरूप साबुन का उत्पादन होगा जो उत्पादन बढ़ाने के लिए अन्तरापृष्ठीय तनाव को बहुत कम कर सकता है।[15] अंतःक्षेपित किए गए जल की श्यानता बढ़ाने के लिए जल में घुलनशील पॉलिमर के पतले घोल का अंतःक्षेपण कुछ संरचनाओं में प्राप्त तेल की मात्रा को बढ़ा सकता है। पेट्रोलियम सल्फ़ोनेट या जैव आद्रक जैसे रम्नोलिपिड जैसे पृष्ठसक्रियकारक के तनु विलयन को अन्तरापृष्ठीय तनाव या केशिका दाब को कम करने के लिए अंतःक्षेपित किया जा सकता है जो तेल की बूंदों को जलाशय के माध्यम से आगे बढ़ने से रोकता है, इसका विश्लेषण बांड संख्या के संदर्भ में किया जाता है, केशिका बलों को गुरुत्वाकर्षण से संबंधित किया जाता है। तेल, जल और आद्रक, माइक्रोइमल्शन के विशेष निरूपण, अंतरपृष्ठीय तनाव को कम करने में विशेष रूप से प्रभावी हो सकते हैं। इन विधियों का अनुप्रयोग साधारणतया रसायनों की लागत और तेल युक्त संरचना की चट्टान पर उनके सोखने और हानि से सीमित होता है। इन सभी विधियों में रसायनों को कई कुओं में अंतःक्षेपित किया जाता है और उत्पादन आसपास के अन्य कुओं में होता है।

पॉलिमर अधिसिंचन

पॉलिमर अधिसिंचन में जल की श्यानता बढ़ाने के लिए अंतःक्षेपित किए गए जल के साथ लंबी श्रृंखला वाले पॉलिमर अणुओं को मिलाना सम्मिलित है। यह विधि जल/तेल गतिशीलता अनुपात में सुधार के परिणामस्वरूप ऊर्ध्वाधर और क्षेत्रीय प्रसर्प दक्षता में सुधार करती है।

आद्रक का उपयोग पॉलिमर और अधिश्वसन पॉलीग्लिसरॉल्स के साथ संयोजन में किया जा सकता है; वे तेल और जल के बीच अंतरापृष्ठीय तनाव को कम करते हैं।[16] यह अवशिष्ट तेल संतृप्ति को कम करता है और प्रक्रिया की स्थूल दक्षता में सुधार करता है।

प्राथमिक आद्रक में साधारण पर निरूपण की स्थिरता में सुधार के लिए सह-आद्रक, गतिविधि बूस्टर और सह-विलायक जोड़े जाते हैं।

कास्टिक अधिसिंचन अंतःक्षेपण वाले जल में सोडियम हाइड्रॉक्साइड का मिश्रण है। यह सतह के तनाव को कम करके, चट्टान की अस्थिरता को उलट कर, तेल का पायसीकरण करके, तेल को एकत्रित करके और चट्टान से तेल को बाहर निकालने में सहायता करता है।

कम लवणता वाले नैनोफ्लुइड्स

ईओआर प्रक्रियाओं को नैनोकणों के साथ तीन विधियों: नैनोकैटलिस्ट, नैनोफ्लुइड्स और नैनोइमल्शन से बढ़ाया जा सकता है। नैनोफ्लुइड्स आधार तरल पदार्थ हैं जिनमें कोलाइडल निलंबन में नैनोकण होते हैं। नैनोफ्लुइड्स तेल क्षेत्रों के ईओआर में कई कार्य करते हैं, जिसमें छिद्र विच्छेदन दाब, चैनल प्लगिंग, अंतरपृष्ठीय तनाव में कमी, गतिशीलता अनुपात, वेटेबिलिटी परिवर्तन और डामर वर्षा की रोकथाम सम्मिलित है। नैनोफ्लुइड्स अंतरापृष्ठ पर एकत्रीकरण के माध्यम से तलछट में फंसे तेल को हटाने के लिए अलग दाब की सुविधा प्रदान करता है। वैकल्पिक रूप से, वेटेबिलिटी परिवर्तन और अंतरपृष्ठीय सतह तनाव में कमी ईओआर के अन्य वैकल्पिक तंत्र हैं।[17][18]


माइक्रोबियल अंतःक्षेपण

सूक्ष्मजैविक अंतःक्षेपण सूक्ष्मजैविक संवर्धित तेल पुनर्प्राप्ति का भाग है और इसका उपयोग शायद ही कभी किया जाता है और क्योंकि इसकी उच्च लागत के कारण ये व्यापक रूप से स्वीकार नहीं किया जाता है। ये रोगाणु या तो लंबे हाइड्रोकार्बन अणुओं को आंशिक रूप से पचाकर, जैवआद्रक उत्पन्न करके, या कार्बन डाइऑक्साइड उत्सर्जित करके कार्य करते हैं (जो फिर ऊपर गैस अंतःक्षेपण में वर्णित अनुसार कार्य करता है)।[19]

माइक्रोबियल अंतःक्षेपण प्राप्त करने के लिए तीन विधियों का उपयोग किया गया है। पहले दृष्टिकोण में, खाद्य स्रोत (साधारण पर गुड़ जैसे कार्बोहाइड्रेट का उपयोग किया जाता है) के साथ मिश्रित जीवाणु संस्कृतियों को तेल क्षेत्र में अंतःक्षेपित किया जाता है। दूसरे दृष्टिकोण में, 1985 से उपयोग किया जा रहा है,[20] वर्त्तमान में उपस्थित सूक्ष्मजीवी निकायों के पोषण के लिए पोषक तत्वों को जमीन में अंतःक्षेपित किया जाता है; ये पोषक तत्व बैक्टीरिया को प्राकृतिक आद्रक का उत्पादन बढ़ाने का कारण बनते हैं जिनका उपयोग वे साधारण पर भूमिगत कच्चे तेल को चयापचय करने के लिए करते हैं।[21] अंतःक्षेपित किए गए पोषक तत्वों के उपभोग के बाद, रोगाणु लगभग-शटडाउन मोड में चले जाते हैं, उनके बाहरी भाग हाइड्रोफिलिक हो जाते हैं, और वे तेल-जल अंतःक्षेपण क्षेत्र में स्थानांतरित हो जाते हैं, जहां वे बड़े तेल द्रव्यमान से तेल की बूंदों का निर्माण करते हैं, जिससे बूंदें अधिक हो जाती है जिनके वेलहेड की ओर पलायन की संभावना है। इस दृष्टिकोण का उपयोग चार कोने के पास के तेल क्षेत्रों और बेवर्ली हिल्स, कैलिफ़ोर्निया में बेवर्ली हिल्स ऑयल फील्ड में किया गया है।

तीसरे दृष्टिकोण का उपयोग कच्चे तेल के पैराफिन मोम घटकों की समस्या का समाधान करने के लिए किया जाता है, जो कच्चे तेल के सतह पर प्रवाहित होने पर अवक्षेपित हो जाते हैं, क्योंकि पृथ्वी की सतह पेट्रोलियम जमाव की तुलना में काफी ठंडी है (तापमान में 9-10- की गिरावट) प्रति हजार फीट गहराई पर 14°C सामान्य है)।

तरल कार्बन डाइऑक्साइड अतीतरलता

कार्बन डाइऑक्साइड (CO2) 2,000 फीट से अधिक गहरे जलाशयों में विशेष रूप से प्रभावी है, जहां CO2 सुपर तरल अवस्था में होता हैं।[22] हल्के तेलों के साथ उच्च दाब वाले अनुप्रयोगों में, CO2 तेल के साथ मिश्रणीय है, जिसके परिणामस्वरूप तेल की स्फीति होती है, और श्यानता में कमी आती है, और संभवतः जलाशय चट्टान के साथ सतह तनाव में भी कमी आती है। कम दबाव वाले जलाशयों या भारी तेलों की स्थिति में, CO2 एक अमिश्रणीय तरल पदार्थ बनेगा, या केवल आंशिक रूप से तेल के साथ मिश्रित होती हैं। तेल में कुछ स्फीति हो सकती है, और तेल की श्यानता अभी भी बहुत कम हो सकती है।[23][24]

इन अनुप्रयोगों में, अंतःक्षेपित किए गए CO2 के आधे से दो-तिहाई के बीच उत्पादित तेल के साथ लौटता है और साधारण तौर पर परिचालन लागत को कम करने के लिए जलाशय में फिर से डाला जाता है। शेष को विभिन्न तरीकों से तेल भंडार में फंसा दिया जाता है। विलायक के रूप में कार्बन डाइऑक्साइड को प्रोपेन और ब्यूटेन जैसे अन्य समान मिश्रणीय तरल पदार्थों की तुलना में अधिक लाभदायक होने का लाभ है।[25]


जल-प्रत्यावर्ती-गैस (डब्ल्यूएजी)

जल-प्रत्यावर्ती-गैस (डब्ल्यूएजी) अंतःक्षेपण ईओआर में प्रयुक्त एक अन्य विधि है। कार्बन डाइऑक्साइड के अतिरिक्त जल का उपयोग किया जाता है। यहां खारे घोल का उपयोग किया जाता है जिससे की तेल के कुओं में कार्बोनेट निर्माण में समस्या नहीं हो सकती हैं।[26][27] अधिक पुनर्प्राप्ति के लिए जल और कार्बन डाइऑक्साइड को तेल के कुएं में अंतःक्षेपित किया जाता है, क्योंकि साधारण तौर पर तेल के साथ उनकी मिश्रणशीलता कम होती है। जल और कार्बन डाइऑक्साइड दोनों के उपयोग से कार्बन डाइऑक्साइड की गतिशीलता भी कम हो जाती है, जिससे गैस कुएं में तेल को विस्थापित करने में अधिक प्रभावी हो जाती है।[28] कोवसेक द्वारा किए गए एक अध्ययन के अनुसार, कार्बन डाइऑक्साइड और जल दोनों के छोटे धातुपिंड का उपयोग करने से तेल की त्वरित पुनःप्राप्ति हो सकती है।[28]इसके अतिरिक्त, 2014 में डैंग द्वारा किए गए एक अध्ययन में, कम लवणता वाले जल का उपयोग करने से अधिक तेल हटाने और अधिक भू-रासायनिक सामंजस्य की अनुमति मिलती है।[29]


प्लाज्मा-पल्स

प्लाज्मा-पल्स प्राविधि 2013 से अमेरिका में उपयोग की जाने वाली प्राविधि है। यह प्राविधि रूसी संघ में सेंट पीटर्सबर्ग स्टेट माइनिंग यूनिवर्सिटी में स्कोल्कोवो इनोवेशन सेंटर की फंडिंग और सहायता से उत्पन्न हुई थी।[30] रूस में विकास टीम और रूस, यूरोप और अब संयुक्त राज्य अमेरिका में तैनाती टीमों ने ऊर्ध्वाधर कुओं में इस प्राविधि का परीक्षण किया है, जिसमें लगभग 90% कुओं ने सकारात्मक प्रभाव दिखाया है।

प्लाज़्मा-पल्स ऑयल वेल ईओआर वही प्रभाव पैदा करने के लिए कम ऊर्जा उत्सर्जन का उपयोग करता है जो कई अन्य प्रौद्योगिकियां नकारात्मक पारिस्थितिक प्रभाव को छोड़कर उत्पन्न कर सकती हैं। लगभग प्रत्येक सन्दर्भ में तेल के साथ खींचे गए जल की मात्रा वास्तव में पूर्व-ईओआर उपचार से बढ़ने के स्थान पर कम हो जाती है। नई विधि के वर्तमान ग्राहकों और उपयोगकर्ताओं में कोनोकोफिलिप्स, ओएनजीसी, गज़प्रोम, रोजनेफ्त और ल्यूकोइल सम्मिलित हैं।

यह रूसी स्पंदित प्लाज्मा प्रक्षेपक के समान प्राविधि पर आधारित है जिसका उपयोग दो अंतरिक्ष जहाजों पर किया गया था और वर्तमान में इसे क्षैतिज कुओं में उपयोग के लिए संवृद्धिधत किया जा रहा है।

आर्थिक लागत और लाभ

तेल पुनर्प्राप्ति विधियों को जोड़ने से तेल की लागत बढ़ जाती है - CO2 के सन्दर्भ में साधारण तौर पर 0.5-8.0 यूएस$ प्रति टन CO2 के बीच होता हैं। दूसरी ओर, तेल का बढ़ा हुआ निष्कर्षण वर्तमान में उपस्थित तेल की कीमतों के आधार पर राजस्व के साथ एक आर्थिक लाभ है।[31] ऑनशोर ईओआर ने शुद्ध 10-16 यूएस डॉलर प्रति टन CO2 15-20 यूएस$/बैरल (इकाई) की तेल कीमतों के लिए अंतःक्षेपण की सीमा में भुगतान किया है। प्रचलित कीमतें कई कारकों पर निर्भर करती हैं, लेकिन किसी भी प्रक्रिया की आर्थिक उपयुक्तता निर्धारित कर सकती हैं, अधिक प्रक्रियाएं और अधिक महंगी प्रक्रियाएं उच्च कीमतों पर आर्थिक रूप से व्यवहार्य होती हैं।[32] उदाहरण: तेल की कीमतें लगभग 90 यूएस$/बैरल के साथ, आर्थिक लाभ लगभग 70 यूएस$ प्रति टन CO2 हैं। अमेरिकी ऊर्जा विभाग का अनुमान है कि 20 अरब टन CO2 पर कब्जा कर लिया गया आर्थिक रूप से पुनर्प्राप्त करने योग्य 67 बिलियन बैरल तेल का उत्पादन कर सकता है।[33]

तेल और गैस उद्योग का तर्क है कि विद्युत ऊर्जा उत्पादन को चलाने और वर्तमान में उपस्थित और भविष्य के तेल और गैस कुओं से ईओआर का समर्थन करने के लिए लिग्नाइट कोयला भंडार के शोषण से प्राप्त कार्बन डाइऑक्साइड का उपयोग अमेरिकी ऊर्जा, पर्यावरण के लिए बहुमुखी समाधान और आर्थिक चुनौतियाँ प्रदान करता है।[33] इसमें कोई संदेह नहीं है कि कोयला और तेल संसाधन सीमित हैं। अमेरिका भविष्य की बिजली जरूरतों को पूरा करने के लिए ऐसे पारंपरिक ऊर्जा स्रोतों का लाभ उठाने की मजबूत स्थिति में है, जबकि अन्य स्रोतों की खोज और विकास किया जा रहा है।[33]कोयला उद्योग के लिए, CO2 ईओआर कोयला गैसीकरण उपोत्पाद के लिए एक बाजार बनाता है और कार्बन परग्रहण और भंडारण से जुड़ी लागत को कम करता है।

1986 से 2008 तक, बढ़ती तेल मांग और तेल आपूर्ति में कमी के कारण, ईओआर से प्राप्त उद्धरण तेल उत्पादन 0.3% से बढ़कर 5% हो गया है।[34]


कार्बन परग्रहण से CO2 के साथ ईओआर परियोजनाएं

सीमा बांध शक्ति स्टेशन, कनाडा

सास्कपावर की बाउंड्री सिमा बांध शक्ति परियोजना ने 2014 में अपने कोयला आधारित शक्ति स्टेशन को कार्बन परग्रहण और सीक्वेस्ट्रेशन (सीसीएस) तकनीक के साथ फिर से तैयार किया गया हैं। संयंत्र 1 मिलियन टन CO2 पर सालाना परग्रहण करेगा, जिसे वह 2017 में व्हाइटकैप रिसोर्सेज को सेनोवस की सस्केचेवान संपत्ति की बिक्री से पहले अपने वेयबर्न तेल क्षेत्र में बढ़ी हुई तेल पुनःप्राप्ति के लिए सेनोवस ऊर्जा को बेचता था |[35][36] इस परियोजना से शुद्ध 18 मिलियन टन CO2 अंतःक्षेपित होने की उम्मीद है और एक अतिरिक्त वसूल करें 130 million barrel[convert: unknown unit]तेल का, तेल क्षेत्र का जीवन 25 वर्ष तक बढ़ गया हैं।[37] 26+ मिलियन टन (शुद्ध उत्पादन) का अनुमान है CO2 को वेयबर्न में संग्रहित किया जाएगा, साथ ही अन्य 8.5 मिलियन टन (उत्पादन का शुद्ध) वेयबर्न-मिडेल कार्बन डाइऑक्साइड परियोजना में संग्रहित किया जाएगा, जिसके परिणामस्वरूप वायुमंडलीय CO2 में CO2 द्वारा तेल क्षेत्र के भंडारण शुद्ध कमी होने लगती हैं। यह एक वर्ष के लिए लगभग 70 लाख कारों को सड़क से हटाने के बराबर है।[38] चूंकि CO2 अंतःक्षेपण 2000 के अंत में प्रारम्भ हुआ, ईओआर परियोजना ने बड़े पैमाने पर पूर्वानुमान के अनुसार प्रदर्शन किया है। वर्तमान में, लगभग 1600 मी3 क्षेत्र से प्रति दिन (10,063 बैरल) वृद्धिशील तेल का उत्पादन किया जा रहा है।

पेट्रा नोवा, संयुक्त राज्य अमेरिका

पेट्रा नोवा परियोजना टेक्सास में डब्ल्यू.ए. पैरिश पावर प्लांट के बॉयलरों में से कुछ कार्बन डाइऑक्साइड उत्सर्जन को पकड़ने के लिए दहन के बाद अमीन अवशोषण का उपयोग करती है, और बढ़ी हुई तेल वसूली में उपयोग के लिए इसे पाइपलाइन द्वारा वेस्ट रेंच तेल क्षेत्र में पहुंचाती है।

केम्पर परियोजना , संयुक्त राज्य अमेरिका (रद्द)

मिसिसिपी पावर की केम्पर काउंटी ऊर्जा सुविधा, या केम्पर प्रोजेक्ट, यू.एस. में अपनी तरह का पहला संयंत्र था जिसके 2015 में ऑनलाइन होने की सम्भावना थी।[39] इसके कोयला गैसीकरण घटक को तब से रद्द कर दिया गया है, और संयंत्र को कार्बन परग्रहण के बिना पारंपरिक प्राकृतिक गैस संयुक्त चक्र बिजली संयंत्र में परिवर्तित कर दिया गया है। दक्षिणी कंपनी की सहायक कंपनी ने कोयले के साथ बिजली उत्पादन के लिए स्वच्छ, कम खर्चीले, अधिक विश्वसनीय प्रकार विकसित करने के सोच से अमेरिकी ऊर्जा विभाग और अन्य भागीदारों के साथ काम किया जो ईओआर उत्पादन का भी समर्थन करते हैं। गैसीकरण प्रौद्योगिकी को एकीकृत गैसीकरण संयुक्त चक्र बिजली संयंत्र को ईंधन देने के लिए नामित किया गया था।[33]इसके अतिरिक्त, केम्पर परियोजना का अद्वितीय स्थान और तेल भंडार से इसकी निकटता ने इसे संवृद्धिधत तेल पुनर्प्राप्ति के लिए आदर्श पदानवेशी बना दिया हैं ।[40]


वेयबर्न-मिडेल, कनाडा

ईओआर को क्षेत्र में प्रदर्शित किए जाने से पहले और बाद में, समय के साथ वेयबर्न-मिडेल तेल उत्पादन।

2000 में, सस्केचेवान के वेबर्न-मिडल तेल क्षेत्र में इओआर को तेल निष्कर्षण की विधि के रूप में प्रयोग किया जाता हैं।[41] 2008 में, तेल क्षेत्र कार्बन डाइऑक्साइड का दुनिया का सबसे बड़ा भंडारण स्थल बन गया।[42] कार्बन डाइऑक्साइड डकोटा गैसीकरण कंपनी से 320 किमी लंबी पाइपलाइन के माध्यम से आता है। अनुमान है कि ईओआर परियोजना लगभग 20 मिलियन टन कार्बन डाइऑक्साइड का भंडारण करेगी, लगभग 130 मिलियन बैरल तेल उत्पन्न करेगी और क्षेत्र के जीवन को दो दशकों से अधिक बढ़ने में सहायता प्रदान करती हैं।[43] यह साइट इसलिए भी उल्लेखनीय है क्योंकि इसने आस-पास की भूकंपीय गतिविधि पर ईओआर के प्रभावों पर अध्ययन की मेजबानी की थी।[41]


CO2 संयुक्त राज्य अमेरिका में ईओआर

संयुक्त राज्य अमेरिका CO2 का उपयोग कर रहा है कई दशकों से ई.ओ.आर. 30 से अधिक वर्षों से, पर्मियन बेसिन में तेल क्षेत्रों का कार्यान्वयन हो रहा है CO2 ईओआर प्राकृतिक रूप CO2 न्यू मैक्सिको और कोलोराडो से प्राप्त स्रोत का उपयोग कर रहा है।[44] ऊर्जा विभाग (डीओई) ने अनुमान लगाया है कि 'अगली पीढ़ी' CO2- का पूर्ण उपयोग होगा संयुक्त राज्य अमेरिका में 240 billion barrels (38 km3) पुनर्प्राप्त करने योग्य तेल संसाधनों का ईओआर अतिरिक्त उत्पन्न कर सकता है। इस क्षमता का विकास वाणिज्यिक CO2 बड़ी मात्रा में की उपलब्धता पर निर्भर करेगा, जिसे कार्बन परग्रहण और भंडारण के व्यापक उपयोग से संभव बनाया जा सकता है। तुलना के लिए, कुल अविकसित अमेरिकी घरेलू तेल संसाधन अभी भी ज़मीन पर उपस्थित कुल 1 trillion barrels (160 km3), से अधिक हैं इसका अधिकांश भाग अप्राप्य बना हुआ है। डीओई का अनुमान है कि यदि ईओआर क्षमता का पूरी तरह से एहसास किया जाता है, तो राज्य और स्थानीय कोषागारों को अन्य आर्थिक लाभों के अतिरिक्त, भविष्य में रॉयल्टी, विच्छेद कर और तेल उत्पादन पर राज्य आय कर से राजस्व में $ 280 बिलियन का लाभ होता हैं।

CO2 का और अधिक लाभ लेने में मुख्य बाधा संयुक्त राज्य अमेरिका में ईओआर लाभदायक CO2 की अपर्याप्त आपूर्ति रही है। वर्तमान में, एक ऑयलफील्ड ऑपरेशन द्वारा CO2 के लिए भुगतान की जाने वाली लागत के बीच एक लागत अंतर है सामान्य बाज़ार परिस्थितियों में और CO2 को ग्रहण और परिवहन करने की लागत बिजली संयंत्रों और औद्योगिक स्रोतों से, इसलिए अधिकांश CO2 प्राकृतिक स्रोतों से आता है। यद्यपि की, CO2 का उपयोग करना बिजली संयंत्रों या औद्योगिक स्रोतों से कार्बन फुटप्रिंट को कम किया जा सकता है (यदि CO2 भूमिगत संग्रहित है)। कुछ औद्योगिक स्रोतों, जैसे प्राकृतिक गैस प्रसंस्करण या उर्वरक और इथेनॉल उत्पादन के लिए, लागत अंतर छोटा है (संभवतः $10-20/टन CO2)। CO2 के अन्य मानव निर्मित स्रोतों के लिए विद्युत् उत्पादन और विभिन्न प्रकार की औद्योगिक प्रक्रियाओं सहित, परग्रहण लागत अधिक होती है, और लागत अंतर बहुत बड़ा हो जाता है (संभावित रूप से $30-50/टन CO2)।[45] संवृद्धिधत तेल पुनर्प्राप्ति पहल ने संयुक्त राज्य अमेरिका में ईओआर और मूल्य अंतर को बंद करके CO2 को आगे बढ़ाने के लिए उद्योग, पर्यावरण समुदाय, श्रम और राज्य सरकारों के नेताओं को एक साथ लाया है संयुक्त राज्य अमेरिका में ईओआर और मूल्य अंतर को बंद करें।

अमेरिका में, नियम कार्बन परग्रहण और उपयोग के साथ-साथ सामान्य तेल उत्पादन में उपयोग के लिए ईओआर के विकास में सहायता और धीमा दोनों कर सकते हैं। ईओआर को नियंत्रित करने वाले प्राथमिक नियमों में से एक 1974 का सुरक्षित पेयजल अधिनियम (एसडीडब्ल्यूए) है, जो ईओआर और इसी तरह के तेल पुनर्प्राप्ति कार्यों पर अधिकांश नियामक शक्ति ईपीए को देता है।[46] बदले में एजेंसी ने इस शक्ति का कुछ भाग अपने स्वयं के भूमिगत अंतःक्षेपण नियंत्रण कार्यक्रम को सौंप दिया,[46]और इस नियामक प्राधिकरण का अधिकांश भाग राज्य और जनजातीय सरकारों के लिए है, जिससे ईओआर विनियमन का अधिकांश भाग एसडीडब्ल्यूए की न्यूनतम आवश्यकताओं अंतर्गत एक स्थानीय स्थिति बन गया है।[46][47] ईपीए तब इन स्थानीय सरकारों और व्यक्तिगत कुओं से सुचना एकत्र करता है जिससे की यह सुनिश्चित किया जा सके कि वे स्वच्छ वायु अधिनियम (संयुक्त राज्य अमेरिका) जैसे समग्र संघीय विनियमन का पालन करते हैं, जो किसी भी कार्बन डाइऑक्साइड ज़ब्ती संचालन के लिए रिपोर्टिंग दिशानिर्देशों को निर्देशित करता है।[46][48] वायुमंडलीय चिंताओं से परे, इनमें से अधिकांश संघीय दिशानिर्देश यह सुनिश्चित करने के लिए हैं कि कार्बन डाइऑक्साइड अंतःक्षेपण से अमेरिका के जलमार्गों को कोई बड़ा नुकसान नहीं हो रहा हैं।[49] कुल मिलाकर, ईओआर विनियमन की स्थानीयता ईओआर परियोजनाओं को और अधिक कठिन बना सकती है, क्योंकि विभिन्न क्षेत्रों में अलग-अलग मानक निर्माण को धीमा कर सकते हैं और एक ही प्राविधि का उपयोग करने के लिए अलग-अलग प्रकारो को प्रयुक्त कर सकते हैं।[50]

फरवरी 2018 में, कांग्रेस पारित हुई और राष्ट्रपति ने आईआरएस के आंतरिक राजस्व कोड की धारा 45Q में परिभाषित कार्बन परग्रहण टैक्स क्रेडिट के विस्तार पर हस्ताक्षर किए। पहले, ये क्रेडिट $10/टन तक सीमित थे और कुल 75 मिलियन टन तक सीमित थे। विस्तार के अंतर्गत, ईओआर जैसी कार्बन परग्रहण और उपयोग परियोजनाएं $35/टन के टैक्स क्रेडिट के लिए पात्र होंगी, और ज़ब्ती परियोजनाओं को $50/टन क्रेडिट प्राप्त होता हैं।[51] विस्तारित कर क्रेडिट 2024 तक निर्मित किसी भी संयंत्र के लिए 12 वर्षों के लिए उपलब्ध होगा, जिसमें कोई आयतन सिमा नहीं होती हैं। सफल होने पर, ये क्रेडिट 200 मिलियन से 2.2 बिलियन मीट्रिक टन कार्बन डाइऑक्साइड को अलग करने में सहायता कर सकते हैं[52] और पेट्रा नोवा में कार्बन परग्रहण और पृथक्करण लागत को वर्तमान में अनुमानित $60/टन से घटाकर $10/टन तक जाता हैं।

पर्यावरणीय प्रभाव

संवृद्धिधत तेल पुनर्प्राप्ति कुएं साधारण तौर पर बड़ी मात्रा में उत्पादित जल को सतह पर पंप करते हैं। इस जल में नमकीन जल होता है और इसमें विषैली भारी धातुएँ और प्राकृतिक रूप से पाए जाने वाले रेडियोधर्मी पदार्थ भी हो सकते हैं।[53] यदि इसे ठीक से नियंत्रित नहीं किया गया तो यह साधारण तौर पर पीने के जल के स्रोतों और पर्यावरण के लिए बहुत हानिकारक हो सकता है। निपटान कुओं का उपयोग उत्पादित जल को जमीन के अंदर गहराई तक पहुंचाकर मिट्टी और जल के सतही प्रदूषण को रोकने के लिए किया जाता है।[54][55]

संयुक्त राज्य अमेरिका में, अंतःक्षेपण अच्छे प्रकार से गतिविधि को संयुक्त राज्य पर्यावरण संरक्षण एजेंसी (ईपीए) और राज्य सरकारों द्वारा सुरक्षित पेयजल अधिनियम के तहत नियंत्रित किया जाता है।[56] ईपीए ने पेयजल स्रोतों की सुरक्षा के लिए भूमिगत अंतःक्षेपण नियंत्रण (यूआईसी) नियम पारित किए हैं।[57] संवृद्धिधत तेल पुनर्प्राप्ति कुओं को ईपीए द्वारा द्वितीय श्रेणी के कुओं के रूप में विनियमित किया जाता है। नियमों के अनुसार कुएं संचालकों को कक्षा II के निपटान कुओं में गहराई से भूमिगत पुनर्प्राप्ति के लिए उपयोग किए जाने वाले नमकीन जल को फिर से अंतःक्षेपित करने की आवश्यकता होती है।[54]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 "बढ़ी हुई तेल की पुनर्प्राप्ति". www.doe.gov. U.S. Department of Energy.
  2. Electric Power Research Institute, Palo Alto, CA (1999). "Enhanced Oil Recovery Scoping Study." Final Report, No. TR-113836.
  3. Clean Air Task Force (2009). "About EOR" Archived March 13, 2012, at the Wayback Machine
  4. Hobson, George Douglas; Eric Neshan Tiratsoo (1975). पेट्रोलियम भूविज्ञान का परिचय. Scientific Press. ISBN 9780901360076.
  5. Walsh, Mark; Larry W. Lake (2003). प्राथमिक हाइड्रोकार्बन पुनर्प्राप्ति के लिए एक सामान्यीकृत दृष्टिकोण. Elsevier.
  6. Organisation for Economic Co-operation and Development. 21st century technologies. 1998. OECD Publishing. pp. 39. ISBN 9789264160521.
  7. Smith, Charles (1966). द्वितीयक तेल पुनर्प्राप्ति के यांत्रिकी. Reinhold Pub. Corp.
  8. "Novas Energy USA Open Offices in Houston, Texas to Introduce its Proprietary Enhanced Oil Recovery Technology in the United States".
  9. 9.0 9.1 "Search Results – Schlumberger Oilfield Glossary". www.glossary.oilfield.slb.com.
  10. Elias, Ramon (2013). "Orcutt Oil Field Thermal DiatomiteCase Study: Cyclic Steam Injection in the Careaga Lease, Santa Barbara County, California". SPE Western Regional & AAPG Pacific Section Meeting 2013 Joint Technical Conference. Monterey, California: Society of Petroleum Engineers. doi:10.2118/165321-MS. ISBN 9781613992647.
  11. "पेट्रोलियम डेवलपमेंट ओमान और ग्लासप्वाइंट ने मिराह सोलर प्लांट से स्टीम डिलीवरी शुरू करने की घोषणा की". November 2017.
  12. "ग्लासप्वाइंट बेलरिज सोलर घोषणा". 2017-11-30.
  13. Temizel, Cenk; Canbaz, Celal Hakan; Tran, Minh; Abdelfatah, Elsayed; Jia, Bao; Putra, Dike; Irani, Mazda; Alkouh, Ahmad (10 December 2018). "A Comprehensive Review Heavy Oil Reservoirs, Latest Techniques, Discoveries, Technologies and Applications in the Oil and Gas Industry". एसपीई अंतर्राष्ट्रीय भारी तेल सम्मेलन और प्रदर्शनी. Society of Petroleum Engineers. doi:10.2118/193646-MS. S2CID 135013997.
  14. "Search Results – Schlumberger Oilfield Glossary". www.glossary.oilfield.slb.com.
  15. Hakiki, Farizal. "A Critical Review of Microbial Enhanced Oil Recovery Using Artificial Sandstone Core: A Mathematical Model". Proceeding of The 38th IPA Conference and Exhibition, Jakarta, Indonesia, May 2014. IPA14-SE-119.
  16. Ferreira, da Silva; Francisco, Bandeira; Cunha, Coutinho-Neto; Homem-de-Mello, Moraes de Almeida; Orestes, Nascimento (2021-12-01). "बढ़ी हुई तेल पुनर्प्राप्ति प्रक्रियाओं पर सेटिलट्रिमिथाइलमोनियम ब्रोमाइड नैनोकैरियर्स के रूप में हाइपरब्रांच्ड पॉलीग्लिसरॉल डेरिवेटिव". Journal of Applied Polymer Science. 139 (9): e51725. doi:10.1002/app.51725. S2CID 244179351.
  17. Kakati, A.; Kumar, G.; Sangwai, J.S. (2020). "Low Salinity Polymer Flooding: Effect on Polymer Rheology, Injectivity, Retention, and Oil Recovery Efficiency". Energy Fuels. 34 (5): 5715–5732. doi:10.1021/acs.energyfuels.0c00393. S2CID 219080243.
  18. Kakati, A.; Kumar, G.; Sangwai, J.S. (2020). "कम अम्ल संख्या वाले हल्के कच्चे तेल के लिए कम लवणता-संवर्धित तेल पुनर्प्राप्ति की तेल पुनर्प्राप्ति दक्षता और तंत्र". ACS Omega. 5 (3): 1506–1518. doi:10.1021/acsomega.9b03229. S2CID 210996949.
  19. Tullo, Alexander H. (February 9, 2009). "छोटे प्रॉस्पेक्टर्स". Chemical & Engineering News. 87 (6): 20–21. doi:10.1021/cen-v087n006.p020.
  20. Nelson, S.J.; Launt, P.D. (March 18, 1991). "एमईओआर उपचार से स्ट्रिपर वेल का उत्पादन बढ़ा". Oil & Gas Journal. 89 (11): 115–118.
  21. Titan Oil Recovery, Inc., Beverly Hills, CA. "Bringing New Life to Oil Fields." Accessed 2012-10-15.
  22. Choudhary, Nilesh; Narayanan Nair, Arun Kumar; Che Ruslan, Mohd Fuad Anwari; Sun, Shuyu (2019-12-24). "कार्बन डाइऑक्साइड, मीथेन और उनके मिश्रण की उपस्थिति में डिकैन के थोक और इंटरफेशियल गुण". Scientific Reports. 9 (1): 19784. Bibcode:2019NatSR...919784C. doi:10.1038/s41598-019-56378-y. ISSN 2045-2322. PMC 6930215. PMID 31875027.
  23. "CO2 for use in enhanced oil recovery (EOR)". Global CCS Institute. Archived from the original on 2014-01-01. Retrieved 2012-02-25.
  24. Choudhary, Nilesh; Che Ruslan, Mohd Fuad Anwari; Narayanan Nair, Arun Kumar; Sun, Shuyu (2021-01-13). "कार्बन डाइऑक्साइड, मीथेन और उनके मिश्रण की उपस्थिति में अल्केन्स के थोक और इंटरफेशियल गुण". Industrial & Engineering Chemistry Research. 60 (1): 729–738. doi:10.1021/acs.iecr.0c04843. ISSN 0888-5885. S2CID 242759157.
  25. कार्बन डाइऑक्साइड संवर्धित तेल पुनर्प्राप्ति (PDF). www.netl.doe.gov (Report). U.S. Department of Energy, National Energy Technology Laboratory. Archived from the original (PDF) on 2013-05-09.
  26. Zekri, Abdulrazag Yusef; Nasr, Mohamed Sanousi; AlShobakyh, Abdullah (2011-01-01). "जल वैकल्पिक गैस (डब्ल्यूएजी) इंजेक्शन द्वारा तेल पुनर्प्राप्ति का मूल्यांकन - तेल-गीला और जल-गीला सिस्टम". SPE Enhanced Oil Recovery Conference, 19–21 July, Kuala Lumpur, Malaysia. Society of Petroleum Engineers. doi:10.2118/143438-MS. ISBN 9781613991350.
  27. Choudhary, Nilesh; Anwari Che Ruslan, Mohd Fuad; Narayanan Nair, Arun Kumar; Qiao, Rui; Sun, Shuyu (2021-07-27). "कार्बन डाइऑक्साइड, मीथेन और उनके मिश्रण की उपस्थिति में डेकेन + ब्राइन सिस्टम के थोक और इंटरफेशियल गुण". Industrial & Engineering Chemistry Research. 60 (30): 11525–11534. doi:10.1021/acs.iecr.1c01607. hdl:10754/660905. ISSN 0888-5885. S2CID 237706393.
  28. 28.0 28.1 Kovscek, A. R.; Cakici, M. D. (2005-07-01). "कार्बन डाइऑक्साइड का भूवैज्ञानिक भंडारण और बढ़ी हुई तेल पुनर्प्राप्ति। द्वितीय. भंडारण और पुनर्प्राप्ति का सह-अनुकूलन". Energy Conversion and Management. 46 (11–12): 1941–1956. doi:10.1016/j.enconman.2004.09.009.
  29. Dang, Cuong T. Q.; Nghiem, Long X.; Chen, Zhangxin; Nguyen, Ngoc T. B.; Nguyen, Quoc P. (2014-04-12). "CO2 Low Salinity Water Alternating Gas: A New Promising Approach for Enhanced Oil Recovery". SPE Improved Oil Recovery Symposium, 12–16 April, Tulsa, Oklahoma, USA. Society of Petroleum Engineers. doi:10.2118/169071-MS. ISBN 9781613993095.
  30. Makarov, Aleksandr (14 April 2016). "प्लाज्मा आवेग उत्तेजना विधि का उपयोग करके क्षैतिज तेल और गैस (शेल) कुओं के लिए पर्यावरण की दृष्टि से उपयुक्त उन्नत तेल और गैस पुनर्प्राप्ति तकनीक का विकास". sk.ru. Skolkovo Foundation. Retrieved 11 July 2016.
  31. Austell, J Michael (2005). "CO2 for Enhanced Oil Recovery Needs – Enhanced Fiscal Incentives". Exploration & Production: The Oil & Gas Review. Archived from the original on 2012-02-07. Retrieved 2007-09-28.
  32. "उन्नत पुनर्प्राप्ति". www.dioneoil.com. NoDoC, Cost Engineering Data Warehouse for Cost Management of Oil & Gas Projects.
  33. 33.0 33.1 33.2 33.3 Hebert, Marc (13 January 2015). "ईओआर के लिए नई प्रौद्योगिकियां ऊर्जा, पर्यावरण और आर्थिक चुनौतियों के लिए बहुआयामी समाधान प्रदान करती हैं". Oil&Gas Financial Journal. Archived from the original on 13 October 2016. Retrieved 27 January 2015.
  34. Tsaia, I-Tsung; Al Alia, Meshayel; El Waddi, Sanaâ; Adnan Zarzourb, aOthman (2013). "Carbon Capture Regulation for The Steel and Aluminum Industries in the UAE: An Empirical Analysis". Energy Procedia. 37: 7732–7740. doi:10.1016/j.egypro.2013.06.719. ISSN 1876-6102. OCLC 5570078737.
  35. "सीमा बांध एकीकृत सीसीएस परियोजना". ZeroCO2.
  36. "सेनोवस वेयबर्न तेल परियोजना में बहुमत हिस्सेदारी बेच रहा है". CBC News. November 13, 2017. Retrieved January 29, 2018.
  37. Brown, Ken; Jazrawi, Waleed; Moberg, R.; Wilson, M. (15–17 May 2001). कार्बन पृथक्करण में उन्नत तेल पुनर्प्राप्ति की भूमिका। वेयबर्न मॉनिटरिंग प्रोजेक्ट, एक केस स्टडी (PDF). Proceedings from the First National Conference on Carbon Sequestration. www.netl.doe.gov. U.S. Department of Energy, National Energy Technology Laboratory. Archived from the original (PDF) on 2012-04-26.
  38. "Weyburn-Midale CO2 Project". Archived from the original on February 8, 2010. Retrieved August 7, 2010.
  39. "CO2 Capture at the Kemper County IGCC Project" (PDF). www.netl.doe.gov. U.S. Department of Energy, National Energy Technology Laboratory. Archived from the original (PDF) on 2016-03-03.
  40. "केम्पर अक्सर पूछे जाने वाले प्रश्न". kemperproject.org. Kemper Project. Archived from the original on 2014-04-13. Retrieved 2015-01-28.
  41. 41.0 41.1 Gao, Rebecca Shuang; Sun, Alexander Y.; Nicot, Jean-Philippe (2016). "Identification of a representative dataset for long-term monitoring at the Weyburn CO 2 -injection enhanced oil recovery site, Saskatchewan, Canada". International Journal of Greenhouse Gas Control. 54: 454–465. doi:10.1016/j.ijggc.2016.05.028.
  42. Casey, Allan (January–February 2008). "कार्बन कब्रिस्तान". Canadian Geographic Magazine.
  43. "Carbon Capture and Sequestration Technologies @ MIT". sequestration.mit.edu. Retrieved 2018-04-12.
  44. Logan, Jeffrey and Venezia, John (2007)."CO2-Enhanced Oil Recovery." Archived 2012-04-28 at the Wayback Machine Excerpt from a WRI Policy Note, "Weighing U.S. Energy Options: The WRI Bubble Chart." World Resources Institute, Washington, DC.
  45. Falwell et al., 2014, Understanding the Enhanced Oil Recovery Initiative, Cornerstone, http://cornerstonemag.net/understanding-the-national-enhanced-oil-recovery-initiative/
  46. 46.0 46.1 46.2 46.3 "भूवैज्ञानिक कार्बन डाइऑक्साइड पृथक्करण के अपने लक्ष्य के साथ संरेखित करने के लिए उन्नत तेल पुनर्प्राप्ति के विनियमन को मजबूत करना" (PDF). NRDC. November 2017.
  47. "Regulatory Authorities for CCS/CO2-EOR — Center for Climate and Energy Solutions". Center for Climate and Energy Solutions. 2017-05-15. Retrieved 2018-04-10.
  48. "इंजेक्शन वेल मालिकों और ऑपरेटरों और राज्य नियामक कार्यक्रमों के लिए अनुपालन रिपोर्टिंग आवश्यकताएँ". U.S. EPA. 2015-06-16. Retrieved 2018-04-10.
  49. de Figueiredo, Mark (February 2005). "कार्बन डाइऑक्साइड का भूमिगत इंजेक्शन नियंत्रण" (PDF). MIT Laboratory for Energy and the Environment.
  50. Alvarado, V.; Manrique, E. (2010). Enhanced oil recovery : field planning and development strategies. Burlington, MA: Gulf Professional Pub./Elsevier. ISBN 9781856178556. OCLC 647764718.
  51. "टैक्स क्रेडिट कार्बन कैप्चर और ज़ब्ती प्रौद्योगिकी को पुनर्जीवित कर सकता है". Forbes. Archived from the original on 2022-12-07.
  52. Trump signed a landmark bill that could create the next big technologies to fight climate change [1]
  53. Igunnu, Ebenezer T.; Chen, George Z. (2012-07-04). "जल उपचार प्रौद्योगिकियों का उत्पादन किया". Int. J. Low-Carbon Technol. 2014 (9): 157. doi:10.1093/ijlct/cts049.
  54. 54.0 54.1 "श्रेणी II तेल और गैस संबंधित इंजेक्शन कुएं". Underground Injection Control. Washington, D.C.: US Environmental Protection Agency (EPA). 2015-10-08.
  55. Gleason, Robert A.; Tangen, Brian A. (2014). संयुक्त राज्य अमेरिका के विलिस्टन बेसिन में तेल और गैस विकास से जलीय संसाधनों में नमकीन पानी का संदूषण. Reston, VA: United States Geological Survey. Retrieved 15 June 2014.
  56. "इंजेक्शन कुओं के बारे में सामान्य जानकारी". EPA. 2015-10-08.
  57. "भूमिगत इंजेक्शन नियंत्रण विनियम". EPA. 2015-10-05.


बाहरी संबंध