उदासीनीकरण (रसायन विज्ञान)
रसायन विज्ञान में, उदासीनीकरण या उदासीनीकरण (अमेरिकी और ब्रिटिश अंग्रेजी वर्तनी अंतर देखें) एक रासायनिक प्रतिक्रिया है जिसमें अम्ल और क्षार (रसायन विज्ञान) एक दूसरे के समान मात्रा के साथ प्रतिक्रिया करते हैं। जो पानी में एक प्रतिक्रिया में, उदासीनीकरण के परिणामस्वरूप घोल में हाइड्रोजन या हाइड्रॉक्साइड आयनों की कोई अधिकता नहीं होती है। जिसके उदासीन विलयन का pH अभिकारकों की अम्ल शक्ति पर निर्भर करता है।
निष्क्रियीकरण का अर्थ
इस प्रकार के रासायनिक प्रतिक्रिया के संदर्भ में न्यूट्रलाइजेशन शब्द का उपयोग अम्ल और क्षार (रसायन विज्ञान) या क्षार के बीच प्रतिक्रिया के लिए किया जाता है। ऐतिहासिक रूप से, इस प्रतिक्रिया को इस प्रकार दर्शाया गया था
- अम्ल + क्षार (क्षार) → नमक + पानी
उदाहरण के लिए:
- HCl + NaOH → NaCl + H2O
यह कथन तब तक मान्य है जब तक यह समझा जाता है कि जलीय घोल में सम्मिलित पदार्थ अलग हो जाते हैं, जो पदार्थों की आयनीकरण स्थिति को बदल देता है। ऐसे तीर चिह्न, → का उपयोग इसलिए किया जाता है क्योंकि प्रतिक्रिया पूर्ण होती है, अर्थात उदासीनीकरण एक मात्रात्मक प्रतिक्रिया है। एक अधिक सामान्य परिभाषा ब्रोंस्टेड-लोरी अम्ल-क्षार सिद्धांत पर आधारित है।
- AH + B → A + BH
इस तरह की सामान्य अभिव्यक्तियों से विद्युत आवेश हटा दिए जाते हैं, क्योंकि प्रत्येक प्रजाति A, AH, B, या BH में विद्युत आवेश हो भी सकता है और नहीं भी होता है। जहाँ ऐसे सल्फ्यूरिक अम्ल का उदासीनीकरण एक विशिष्ट उदाहरण प्रदान करता है। इस उदाहरण में दो आंशिक उदासीनीकरण प्रतिक्रियाएँ संभव हैं।
- H2SO4 + OH− → HSO−
4 + H2O - HSO−
4 + OH−→ SO2−
4 + H2O - कुल मिलाकर: H2SO4 + 2 OH− → SO2−
4+ 2 H2O
इस प्रकार के अम्ल AH के निष्प्रभावी हो जाने के बाद घोल में अम्ल का कोई अणु (या अणु के पृथक्करण से उत्पन्न हाइड्रोजन आयन) नहीं बचता है।
जब किसी अम्ल को उदासीन किया जाता है तो उसमें जोड़े गए क्षार की मात्रा प्रारंभ में उपस्थित अम्ल की मात्रा के समान होनी चाहिए। जिसमे आधार की यह मात्रा समतुल्य (रसायन) मात्रा कहलाती है। क्षार के साथ अम्ल के अनुमापन में उदासीनीकरण बिंदु को तुल्यता बिंदु भी कहा जा सकता है। उदासीनीकरण प्रतिक्रिया की मात्रात्मक प्रकृति को अम्ल और क्षार की सांद्रता के संदर्भ में सबसे सरलता से व्यक्त किया जाता है। तुल्यता बिंदु पर:
- आयतन (अम्ल) × सांद्रता (H+पृथक्करण से आयन) = आयतन (आधार) × सांद्रता (OH−आयन)
सामान्य रूप से पर, एक अम्ल AHn के लिए एकाग्रता पर c1 आधार B(OH)m के साथ प्रतिक्रिया करना है जो कि एकाग्रता पर c2 वॉल्यूम इससे संबंधित हैं:
- n v1 c1 = m v2 c2
किसी अम्ल द्वारा क्षार को उदासीन किये जाने का एक उदाहरण इस प्रकार है।
- Ba(OH)2 + 2 H+ → Ba2+ + 2 H2O
अम्ल और क्षार की सांद्रता से संबंधित वही समीकरण प्रयुक्त होता है। जों उदासीनीकरण की अवधारणा समाधान में प्रतिक्रियाओं तक ही सीमित नहीं है। उदाहरण के लिए, सल्फ्यूरिक अम्ल जैसे अम्ल के साथ चूना पत्थर की प्रतिक्रिया भी एक उदासीनीकरण प्रतिक्रिया है।
- [Ca,Mg]CO3(s) + H2SO4(aq) → (Ca2+, Mg2+)(aq) + SO2−
4(aq)+ CO2(g) + H2O
ऐसी प्रतिक्रियाएँ मृदा रसायन विज्ञान में महत्वपूर्ण हैं।
प्रबल अम्ल और प्रबल क्षार
एक प्रबल अम्ल वह है जो जलीय घोल में पूरी तरह से पृथक्करण (रसायन विज्ञान) करता है। उदाहरण के लिए, हाइड्रोक्लोरिक अम्ल , एचसीएल, एक प्रबल अम्ल है।
- HCl(aq) → H+(aq) + Cl−(aq)
एक प्रबल आधार वह है जो जलीय घोल में पूरी तरह से पृथक्करण (रसायन विज्ञान) है। उदाहरण के लिए, सोडियम हाइड्रॉक्साइड, NaOH, एक प्रबल आधार है।
- NaOH(aq) → Na+(aq) + OH−(aq)
इसलिए, जब एक प्रबल अम्ल एक प्रबल आधार के साथ प्रतिक्रिया करता है तो उदासीनीकरण प्रतिक्रिया को इस प्रकार लिखा जा सकता है
- H+ + OH− → H2O
उदाहरण के लिए, हाइड्रोक्लोरिक अम्ल और सोडियम हाइड्रॉक्साइड के बीच प्रतिक्रिया में सोडियम और क्लोराइड आयन, Na+और Cl− प्रतिक्रिया में भाग न लें। प्रतिक्रिया ब्रोंस्टेड-लोरी परिभाषा के अनुरूप है क्योंकि वास्तव में हाइड्रोजन आयन हाइड्रोनियम आयन के रूप में उपस्थित है, जिससे तटस्थीकरण प्रतिक्रिया को इस प्रकार लिखा जा सकता है
- H3O+ + OH− → H2O + H2O
जब एक प्रबल अम्ल को एक प्रबल आधार द्वारा अप्रभावी किया जाता है तो घोल में कोई अतिरिक्त हाइड्रोजन आयन नहीं बचते हैं। इस घोल को तटस्थ घोल कहा जाता है क्योंकि यह न तो अम्लीय है और न ही क्षारीय होता है। तो ऐसे घोल का pH मान 7 के निकट होता है; जो कि स्पष्ट pH मान घोल के तापमान पर निर्भर करता है।
उदासीनीकरण एक ऊष्माक्षेपी प्रतिक्रिया है। प्रतिक्रिया के लिए मानक एन्थैल्पी परिवर्तन H+ + OH− → H2O -57.30 kJ/mol है।
मात्रात्मक उपचार
यह पूरी तरह से विघटित शब्द किसी विलेय पर तब प्रयुक्त होता है जब असंबद्ध विलेय की सांद्रता पता लगाने की सीमा से कम होती है, अर्थात, जब असंबद्ध विलेय की सांद्रता मापी जाने के लिए बहुत कम होती है। मात्रात्मक रूप से, इसे log K < −2 या कुछ पाठों में log K < −1.76 के रूप में व्यक्त किया जाता है। इसका अर्थ यह है कि पृथक्करण स्थिरांक का मान प्रयोगात्मक माप से प्राप्त नहीं किया जा सकता है। चूँकि, इसका मूल्य का अनुमान सैद्धांतिक रूप से लगाया जा सकता है। उदाहरण के लिए, कमरे के तापमान पर जलीय घोल में हाइड्रोजन क्लोराइड के लिए log K ≈ −6 का मान अनुमानित किया गया है[1] एक रासायनिक यौगिक घोल में एक प्रबल अम्ल के रूप में व्यवहार कर सकता है जब इसकी सांद्रता कम हो और जब इसकी सांद्रता बहुत अधिक हो तो एक अशक्त अम्ल के रूप में व्यवहार कर सकता है। सल्फ्यूरिक अम्ल ऐसे यौगिक का एक उदाहरण है।
अशक्त अम्ल और प्रबल क्षार
एक अशक्त अम्ल HA वह है जो पानी में घुलने पर पूरी तरह से अलग नहीं होता है। इसके बजाय एक संतुलन रसायन मिश्रण बनता है:
- एचए + एच2O ⇌ एच3O+ + ए−
एसिटिक अम्ल अशक्त अम्ल का उदाहरण है। परिणामित उदासीन विलयन का pH
- हा + ओह−→ एच2ओ + ए−
एक प्रबल अम्ल की तरह, 7 के करीब नहीं है, लेकिन अम्ल पृथक्करण स्थिरांक, K पर निर्भर करता हैa, अम्ल का। अनुमापन में अंतिम बिंदु या समतुल्य बिंदु पर पीएच की गणना निम्नानुसार की जा सकती है। अंत-बिंदु पर अम्ल पूरी तरह से बेअसर हो जाता है इसलिए विश्लेषणात्मक हाइड्रोजन आयन एकाग्रता, टीH, शून्य है और संयुग्म आधार की सांद्रता, ए−, विश्लेषणात्मक या औपचारिक एकाग्रता टी के समान हैA अम्ल का: [ए−] = टीA. जब एसिड, HA का एक घोल रासायनिक संतुलन पर होता है, तो परिभाषा के अनुसार सांद्रता अभिव्यक्ति से संबंधित होती है
- [ए−][एच+] = केa [एचए]; पकa = −लघुगणक Ka
विलायक (उदाहरण के लिए पानी) को इस धारणा पर परिभाषित अभिव्यक्ति से हटा दिया गया है कि इसकी एकाग्रता भंग अम्ल की एकाग्रता से बहुत अधिक है, [एच2ओ] ≫ टीA. हाइड्रोजन आयनों में द्रव्यमान-संतुलन के समीकरण को इस प्रकार लिखा जा सकता है
- टीH = [एच+] + [ए−][एच+]/केa − Kw/[H+]
जहां केw जल के स्व-आयनीकरण | जल के स्व-पृथक्करण स्थिरांक का प्रतिनिधित्व करता है। चूंकि केw = [एच+][ओह−], शब्द Kw/[H+] [OH के समान है−], हाइड्रॉक्साइड आयनों की सांद्रता। तटस्थीकरण पर, टीH शून्य है. समीकरण के दोनों पक्षों को [H से गुणा करने के बाद+], बन जाता है
- [एच+]2+टीA[एच+]2/Ka − केw = 0
और, पुनर्व्यवस्था और लघुगणक लेने के बाद,
- पीएच = 1/2 पकw + 1/2 लॉग (1+ TA/Ka)
अशक्त अम्ल के तनु विलयन के साथ, पद 1+ TA/Ka के समान है TA/Ka एक अच्छे सन्निकटन के लिए। यदि पी.केw = 14,
- पह = 7 + (पकa + लॉग टीA)/2
यह समीकरण निम्नलिखित तथ्यों की व्याख्या करता है:
- अंत-बिंदु पर पीएच मुख्य रूप से एसिड, पीके की ताकत पर निर्भर करता हैa.
- अंतिम बिंदु पर पीएच 7 से अधिक है और एसिड, टी की बढ़ती सांद्रता के साथ बढ़ता हैA, जैसा कि चित्र में देखा गया है।
एक प्रबल आधार के साथ अशक्त अम्ल के अनुमापन में जैसे-जैसे अंतिम बिंदु करीब आता है पीएच अधिक तेजी से बढ़ता है। अंतिम बिंदु पर, टाइट्रेट करना की मात्रा के संबंध में pH के वक्र का ढलान अधिकतम होता है। चूंकि अंतिम बिंदु 7 से अधिक पीएच पर होता है, इसलिए उपयोग करने के लिए सबसे उपयुक्त पीएच संकेतक फिनोलफथेलिन की तरह एक है, जो उच्च पीएच पर रंग बदलता है।[2]
अशक्त क्षार और प्रबल अम्ल
स्थिति अशक्त अम्ल और प्रबल क्षार के समान है।
- बी + एच3O+ ⇌ बीएच+ +एच2हे
ऐमीन कमज़ोर क्षारकों के उदाहरण हैं। निष्प्रभावी घोल का पीएच प्रोटोनेटेड बेस, पीके के अम्ल पृथक्करण स्थिरांक पर निर्भर करता हैa, या, समकक्ष, आधार एसोसिएशन स्थिरांक, पीके परb. इस प्रकार के अनुमापन के लिए उपयोग करने के लिए सबसे उपयुक्त संकेतक मिथाइल नारंगी है, जो कम पीएच पर रंग बदलता है।
अशक्त अम्ल और अशक्त क्षार
जब एक अशक्त अम्ल अशक्त क्षार के समान मात्रा के साथ प्रतिक्रिया करता है,
- एचए + बी ⇌ ए− + BH+
पूर्ण निराकरण हमेशा नहीं होता है। एक दूसरे के साथ संतुलन में प्रजातियों की सांद्रता प्रतिक्रिया के लिए संतुलन स्थिरांक, K पर निर्भर करेगी, जिसे निम्नानुसार परिभाषित किया गया है:
- [ए−][BH+] = के [एचए][बी]।
उदासीनीकरण प्रतिक्रिया को निम्नलिखित दो अम्ल पृथक्करण प्रतिक्रियाओं का अंतर माना जा सकता है
- हा ⇌ एच+ + ए− कa,A = [ए−][एच+</सुप>]/[है]
- बह+ ⇌ बी + एच+ कa,B = [बी][एच+</सुप>]/[बह+]
पृथक्करण स्थिरांक K के साथa,A और केa,B अम्ल HA और BH का+, क्रमशः। प्रतिक्रिया भागफल के निरीक्षण से यह पता चलता है
के = Ka,A/Ka,B.
एक अशक्त अम्ल को हमेशा अशक्त आधार द्वारा बेअसर नहीं किया जा सकता है, और इसके विपरीत। हालाँकि, बेंज़ोइक अम्ल (Ka,A = 6.5 × 10−5) अमोनिया के साथ (Ka,B = 5.6 × 10-अमोनियम के लिए −10), K = 1.2×105>>1, और 99% से अधिक बेंजोइक अम्ल बेंजोएट में परिवर्तित हो जाता है।
अनुप्रयोग
अज्ञात सांद्रता निर्धारित करने के लिए अम्ल या क्षार का विश्लेषण करने के लिए रासायनिक अनुमापन विधियों का उपयोग किया जाता है। या तो एक पीएच मीटर या एक पीएच संकेतक जो एक अलग रंग परिवर्तन द्वारा तटस्थता के बिंदु को दर्शाता है, को नियोजित किया जा सकता है। अज्ञात की ज्ञात मात्रा और जोड़े गए रसायन की ज्ञात मात्रा और मोलर सांद्रता के साथ सरल स्तुईचिओमेटरी गणना अज्ञात की मात्रा बताती है।
जल उपचार में, किसी अपशिष्ट पदार्थ को पर्यावरण में छोड़े जाने पर होने वाले नुकसान को कम करने के लिए अक्सर रासायनिक तटस्थीकरण विधियों का उपयोग किया जाता है। पीएच नियंत्रण के लिए, लोकप्रिय रसायनों में कैल्शियम कार्बोनेट, कैल्शियम ऑक्साइड, मैग्नेशियम हायड्रॉक्साइड और सोडियम बाईकारबोनेट सम्मिलित हैं। उपयुक्त उदासीनीकरण रसायन का चयन विशेष अनुप्रयोग पर निर्भर करता है।
उदासीनीकरण प्रतिक्रियाओं के कई उपयोग हैं जो अम्ल-क्षार प्रतिक्रियाएं हैं। अम्लनाशक गोलियों का उपयोग बहुत आम है। इन्हें पेट में अतिरिक्त गैस्ट्रिक अम्ल (हाइड्रोक्लोरिक एसिड) को बेअसर करने के लिए डिज़ाइन किया गया है जो पेट या निचले अन्नप्रणाली में असुविधा पैदा कर सकता है। इसे सोडियम बाइकार्बोनेट (NaHCO) के सेवन से भी ठीक किया जा सकता है3). सोडियम बाइकार्बोनेट का उपयोग आमतौर पर प्रयोगशालाओं में अम्ल फैलने के साथ-साथ रासायनिक जलन को बेअसर करने के लिए भी किया जाता है।
नैनोमटेरियल्स के रासायनिक संश्लेषण में, धातु अग्रदूतों की रासायनिक कमी को सुविधाजनक बनाने के लिए तटस्थता प्रतिक्रिया की गर्मी का उपयोग किया जा सकता है।[3] इसके अलावा पाचन तंत्र में, जब भोजन को पेट से आंतों में ले जाया जाता है तो तटस्थीकरण प्रतिक्रियाओं का उपयोग किया जाता है। आंतों की दीवार के माध्यम से पोषक तत्वों को अवशोषित करने के लिए, एक क्षारीय वातावरण की आवश्यकता होती है, इसलिए अग्न्याशय इस परिवर्तन को करने के लिए एक एंटासिड बाइकार्बोनेट का उत्पादन करता है।
एक अन्य आम उपयोग, हालांकि शायद उतना व्यापक रूप से ज्ञात नहीं है, उर्वरकों और मिट्टी पीएच के नियंत्रण में है। बुझे हुए चूने (कैल्शियम हाइड्रॉक्साइड) या चूना पत्थर (कैल्शियम कार्बोनेट) को मिट्टी में मिलाया जा सकता है जो पौधों के विकास के लिए बहुत अम्लीय है। पौधों की वृद्धि में सुधार करने वाले उर्वरक सल्फ्यूरिक अम्ल (एच) को निष्क्रिय करके बनाए जाते हैं2इसलिए4) या नाइट्रिक अम्ल (HNO3) अमोनिया गैस (एनएच) के साथ3), अमोनियम सल्फेट या अमोनियम नाइट्रेट बनाना। ये उर्वरक में उपयोग किये जाने वाले लवण हैं।
औद्योगिक रूप से, कोयलायले के जलने का एक उप-उत्पाद, सल्फर डाइऑक्साइड गैस, हवा में जल वाष्प के साथ मिलकर अंततः सल्फ्यूरिक अम्ल का उत्पादन कर सकती है, जो अम्लीय वर्षा के रूप में गिरती है। सल्फर डाइऑक्साइड को निकलने से रोकने के लिए, स्क्रबर नामक एक उपकरण धुएं के ढेर से गैस इकट्ठा करता है। यह उपकरण सबसे पहले कैल्शियम कार्बोनेट को दहन कक्ष में प्रवाहित करता है जहां यह कैल्शियम ऑक्साइड (चूना) और कार्बन डाइऑक्साइड में विघटित हो जाता है। यह चूना फिर उत्पादित सल्फर डाइऑक्साइड के साथ प्रतिक्रिया करके कैल्शियम सल्फाइट बनाता है। फिर घोल बनाने के लिए मिश्रण में चूने का एक सस्पेंशन डाला जाता है, जो कैल्शियम सल्फाइट और बचे हुए अप्रयुक्त सल्फर डाइऑक्साइड को हटा देता है।
संदर्भ
- ↑ है<रेफ नाम = ट्रम्मल 3663-3669 >Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A.; Leito, Ivo (2016-05-06). "पानी और डाइमिथाइल सल्फ़ोक्साइड में मजबूत एसिड की अम्लता". The Journal of Physical Chemistry A (in English). 120 (20): 3663–3669. Bibcode:2016JPCA..120.3663T. doi:10.1021/acs.jpca.6b02253. ISSN 1089-5639. PMID 27115918. S2CID 29697201.
- ↑ Steven S. Zumdahl (2009). रासायनिक सिद्धांत (6th ed.). New York: Houghton Mifflin Company. pp. 319–324.
- ↑ Yin, Xi; Wu, Jianbo; Li, Panpan; Shi, Miao; Yang, Hong (January 2016). "समान धातु नैनोस्ट्रक्चर के तेजी से उत्पादन के लिए स्व-हीटिंग दृष्टिकोण". ChemNanoMat. 2 (1): 37–41. doi:10.1002/cnma.201500123.
अग्रिम पठन
Neutralization is covered in most general chemistry textbooks. Detailed treatments may be found in textbooks on analytical chemistry such as
- Skoog, D.A; West, D.M.; Holler, J.F.; Crouch, S.R. (2004). Fundamentals of Analytical Chemistry (8th ed.). Thomson Brooks/Cole. ISBN 0-03-035523-0. Chapters 14, 15 and 16
Applications
- Stumm, W.; Morgan, J.J. (1996). Water Chemistry. New York: Wiley. ISBN 0-471-05196-9.
- Snoeyink, V.L.; Jenkins, D. (1980). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York: Wiley. ISBN 0-471-51185-4.
- Millero, F.J. (2006). Chemical Oceanography (3rd ed.). London: Taylor and Francis. ISBN 0-8493-2280-4.
- Metcalf & Eddy. Wastewater Engineering, Treatment and Reuse. 4th ed. New York: McGraw-Hill, 2003. 526-532.