विद्युत क्षेत्रबिंदु द्विध्रुव (ऊपरी बाएँ), विद्युत आवेशों के भौतिक द्विध्रुव (ऊपरी दाएँ), पतली ध्रुवीकृत शीट (निचला बाएँ) या प्लेट संधारित्र (निचला दाएँ) के कारण होता है। जब व्यवस्था अत्यंत छोटी होती है तब सभी समान क्षेत्र प्रोफ़ाइल उत्पन्न करते हैं।
विद्युत द्विध्रुव आघूर्ण प्रणाली के अंदर धनात्मक और ऋणात्मक विद्युत आवेश के पृथक्करण का माप है, अर्थात, प्रणाली की समग्र रासायनिक ध्रुवता का माप है। इस प्रकार विद्युत द्विध्रुव आघूर्ण के लिए इकाइयों की अंतर्राष्ट्रीय प्रणालीकूलम्ब-मीटर (C⋅m) है। डिबाई (डी) परमाणु भौतिकी और रसायन विज्ञान में उपयोग की जाने वाली माप की और इकाई है।
सैद्धांतिक रूप से, विद्युत द्विध्रुव को बहुध्रुव विस्तार के प्रथम-क्रम पद द्वारा परिभाषित किया जाता है; इसमें दो समान और विपरीत आवेश होते हैं जो एक-दूसरे के बहुत करीब होते हैं, चूंकि वास्तविक द्विध्रुवों में भिन्न-भिन्न आवेश होते हैं।
दो बिंदु आवेशों के विद्युत द्विध्रुव क्षण को परिभाषित करने वाली मात्राएँ।
एक विद्युत द्विध्रुव के विद्युत क्षेत्र को दर्शाने वाला एनीमेशन। द्विध्रुव में विपरीत ध्रुवता के दो बिंदु विद्युत आवेश एक साथ स्थित होते हैं। एक बिंदु-आकार वाले द्विध्रुव से एक परिमित-आकार वाले विद्युत द्विध्रुव में परिवर्तन दिखाया गया है।
एक पानी का अणु एक "मुड़ी हुई" संरचना में अपने इलेक्ट्रॉनों के असमान बंटवारे के कारण ध्रुवीय है। आवेश का पृथक्करण मध्य में ऋणात्मक आवेश (लाल छाया) और सिरों पर धनात्मक आवेश (नीला छाया) के साथ उपस्थित होता है।
अधिकांशतः भौतिकी में किसी विशाल वस्तु के आयामों को नजरअंदाज किया जा सकता है और उसे बिंदु जैसी वस्तु, अर्थात बिंदु कण के रूप में माना जा सकता है। इस प्रकार विद्युत आवेश वाले बिंदु कणों को बिंदु आवेश कहा जाता है। दो बिंदु आवेश, आवेश सहित +q और दूसरा आवेश वाला −q दूरी से भिन्न हो गया d, विद्युत द्विध्रुव (मल्टीपोल विस्तार का साधारण स्थिति) का गठन करता है। इस स्थितियों के लिए, विद्युत द्विध्रुव आघूर्ण का परिमाण होता है
और ऋणात्मक आवेश से धनात्मक आवेश की ओर निर्देशित होता है। कुछ लेखक भिन्न हो सकते हैं d आधे में और उपयोग करें s = d/2 चूँकि यह मात्रा किसी भी आवेश और द्विध्रुव के केंद्र के मध्य की दूरी है, जिससे परिभाषा में दो का कारक बनता है। इस प्रकार एक शक्तिशाली गणितीय परिभाषा सदिश बीजगणित का उपयोग करना है, क्योंकि परिमाण और दिशा वाली मात्रा, जैसे दो बिंदु आवेशों के द्विध्रुव क्षण को सदिश रूप में व्यक्त किया जा सकता है
कहाँ d ऋणात्मक आवेश से धनात्मक आवेश की ओर इंगित करने वाला विस्थापन (सदिश) है। विद्युत द्विध्रुव आघूर्ण सदिश p ऋणात्मक आवेश से धनात्मक आवेश की ओर भी इंगित करता है। इस प्रकार इस परिभाषा के साथ द्विध्रुव दिशा स्वयं को बाहरी विद्युत क्षेत्र के साथ संरेखित करती है (और ध्यान दें कि द्विध्रुव के आवेशों द्वारा निर्मित विद्युत प्रवाह रेखाएं, जो धनात्मक आवेश से ऋणात्मक आवेश की ओर इंगित करती हैं, बाहरी विद्युत क्षेत्र की प्रवाह रेखाओं का विरोध करती हैं मैदान)। इस प्रकार ध्यान दें कि इस संकेत परंपरा का उपयोग भौतिकी में किया जाता है, जबकि धनात्मक आवेश से ऋणात्मक आवेश तक द्विध्रुव के लिए विपरीत संकेत परंपरा का उपयोग रसायन विज्ञान में किया जाता है।[1] इस प्रकार दो-आवेश प्रणाली का आदर्शीकरण विद्युत बिंदु द्विध्रुव है जिसमें दो (अनंत) आवेश होते हैं जो केवल अनंत रूप से भिन्न होते हैं, किन्तु सीमित सीमा के साथ p. इस मात्रा का उपयोग ध्रुवीकरण घनत्व की परिभाषा में किया जाता है।
ऊर्जा और आघूर्ण
एक समान ई क्षेत्र में विद्युत द्विध्रुव P और इसका आघूर्ण τ।
विद्युत द्विध्रुव आघूर्ण p वाली कोई वस्तु बाह्य विद्युत क्षेत्र E में रखे जाने पर बलाघूर्ण τ के अधीन होती है। बलाघूर्ण द्विध्रुव को क्षेत्र के साथ संरेखित करता है। विद्युत क्षेत्र के समानांतर संरेखित द्विध्रुव में उसके साथ कुछ कोण बनाने वाले द्विध्रुव की तुलना में कम संभावित ऊर्जा होती है। इस प्रकार द्विध्रुव द्वारा व्याप्त छोटे क्षेत्र में स्थानिक रूप से समान विद्युत क्षेत्र के लिए, ऊर्जा U और आघूर्णः द्वारा दिए गए हैं[2]
अदिश बिंदु⋅ उत्पाद और ऋणात्मक चिह्न दर्शाता है कि जब द्विध्रुव क्षेत्र के समानांतर होता है तब स्थितिज ऊर्जा न्यूनतम हो जाती है और प्रतिसमानांतर होने पर अधिकतम होती है जबकि लंबवत होने पर शून्य होती है। इस प्रकार प्रतीक×सदिश क्रॉस उत्पाद को संदर्भित करता है। E-क्षेत्र सदिश और द्विध्रुव सदिश विमान को परिभाषित करते हैं, और टोक़ को दाहिने हाथ के नियम द्वारा दी गई दिशा के साथ उस विमान के सामान्य रूप से निर्देशित किया जाता है। इस प्रकार ध्यान दें कि ऐसे समान क्षेत्र में द्विध्रुव मुड़ सकता है और दोलन कर सकता है किन्तु द्विध्रुव के कोई रैखिक त्वरण के साथ कोई समग्र शुद्ध बल प्राप्त नहीं करता है। द्विध्रुव बाहरी क्षेत्र के साथ संरेखित होने के लिए मुड़ता है।
चूँकि गैर-समान विद्युत क्षेत्र में द्विध्रुव वास्तव में शुद्ध बल प्राप्त कर सकता है क्योंकि द्विध्रुव के छोर पर बल वर्तमान दूसरे छोर पर संतुलित नहीं होता है। यह दिखाया जा सकता है कि यह शुद्ध बल सामान्यतः द्विध्रुवीय क्षण के समानांतर होता है।
अभिव्यक्ति (सामान्य स्थिति)
अधिक सामान्यतः, आयतन V तक सीमित आवेश के निरंतर वितरण के लिए, द्विध्रुव क्षण के लिए संगत अभिव्यक्ति है:
जहां r अवलोकन के बिंदु का पता लगाता है और d3r′ V में एक प्राथमिक आयतन को दर्शाता है। इस प्रकार बिंदु आवेशों की एक सरणी के लिए, आवेश घनत्व डिराक डेल्टावेरिएबल का योग बन जाता है:
जहां प्रत्येक आरi किसी संदर्भ बिंदु से आवेश qi. तक सदिश है उपरोक्त एकीकरण सूत्र में प्रतिस्थापन प्रदान करता है:
यह अभिव्यक्ति आवेश तटस्थता और एन = 2 के स्थितियों में पिछली अभिव्यक्ति के सामान्तर है। दो विपरीत आरोपों के लिए, जोड़ी के धनात्मक आवेश के स्थान को 'आर' के रूप में दर्शाया गया है।+ और ऋणात्मक आवेश का स्थान r के रूप में है−:
यह दर्शाता है कि द्विध्रुव आघूर्ण सदिश ऋणात्मक आवेश से धनात्मक आवेश की ओर निर्देशित होता है क्योंकि किसी बिंदु का स्थिति सदिश मूल बिंदु से उस बिंदु तक बाहर की ओर निर्देशित होता है।
द्विध्रुव आघूर्ण आवेशों की समग्र तटस्थ प्रणाली के संदर्भ में विशेष रूप से उपयोगी है, उदाहरण के लिए विपरीत आवेशों की जोड़ी, या समान विद्युत क्षेत्र में तटस्थ कंडक्टर।
आवेशों की ऐसी प्रणाली के लिए, जिसे युग्मित विपरीत आवेशों की श्रृंखला के रूप में देखा जाता है, विद्युत द्विध्रुव आघूर्ण का संबंध है:
जहां r अवलोकन का बिंदु है, और di = r'i − ri, ri द्विध्रुव i, और 'r में ऋणात्मक आवेश की स्थिति होना'i धनात्मक आवेश की स्थिति.
यह तटस्थ आवेश युग्मों के व्यक्तिगत द्विध्रुव आघूर्णों का सदिश योग है। (समग्र आवेश तटस्थता के कारण , द्विध्रुव क्षण पर्यवेक्षक की स्थिति आर से स्वतंत्र है।) इस प्रकार, पी का मान संदर्भ बिंदु की पसंद से स्वतंत्र है, परंतु प्रणाली का समग्र आवेश शून्य हो।
गैर-तटस्थ प्रणाली के द्विध्रुवीय क्षण, जैसे कि प्रोटोन के द्विध्रुवीय क्षण, पर चर्चा करते समय संदर्भ बिंदु की पसंद पर निर्भरता उत्पन्न होती है। ऐसे स्थितियों में यह पारंपरिक है कि संदर्भ बिंदु को प्रणाली के द्रव्यमान का केंद्र चुना जाए, न कि किसी मनमाने मूल को।[3] यह विकल्प केवल परंपरा का विषय नहीं है: द्विध्रुव क्षण की धारणा अनिवार्य रूप से टोक़ की यांत्रिक धारणा से ली गई है, और यांत्रिकी की तरह, अवलोकन बिंदु के रूप में द्रव्यमान के केंद्र को चुनना कम्प्यूटेशनल और सैद्धांतिक रूप से उपयोगी है। किसी आवेशित अणु के लिए द्रव्यमान के केंद्र के अतिरिक्त आवेश का केंद्र संदर्भ बिंदु होना चाहिए। इस प्रकार तटस्थ प्रणालियों के लिए संदर्भ बिंदु महत्वपूर्ण नहीं है, और द्विध्रुवीय क्षण प्रणाली का आंतरिक गुण है।
विद्युत द्विध्रुव की क्षमता और क्षेत्र
एक आदर्श द्विध्रुव में अनंत सूक्ष्म पृथक्करण वाले दो विपरीत आवेश होते हैं। इस प्रकार हम ऐसे आदर्श द्विध्रुव की क्षमता और क्षेत्र की गणना करते हैं, जो पृथक्करण d > 0 पर दो विपरीत आवेशों से प्रारंभ होता है, और सीमा को d → 0 के रूप में लेता है।
दो निकट दूरी वाले विपरीत आवेशों ±q की क्षमता इस प्रकार है:
आवेश घनत्व के अनुरूप
कूलम्ब के नियम के अनुसार, जहां आवेश पृथक्करण है:
मान लीजिए कि R मध्यबिंदु के सापेक्ष स्थिति सदिश को दर्शाता है , और संबंधित इकाई सदिश:
टेलर का विस्तार (मल्टीपोल विस्तार और क्वाड्रुपोल इलेक्ट्रिक क्वाड्रुपोल देखें) इस क्षमता को श्रृंखला के रूप में व्यक्त करता है।[4][5]
जहां श्रृंखला में उच्च क्रम के पद बड़ी दूरी पर गायब हो रहे हैं, आर, डी की तुलना में। यहां, विद्युत द्विध्रुव आघूर्ण p उपरोक्तानुसार है:
द्विध्रुव विभव का परिणाम इस प्रकार भी व्यक्त किया जा सकता है:[6]
जो बिंदु आवेश के द्विध्रुवीय विभव से संबंधित है। मुख्य बिंदु यह है कि द्विध्रुव की क्षमता बिंदु आवेश की तुलना में दूरी आर के साथ तेजी से गिरती है।
द्विध्रुव का विद्युत क्षेत्र विभव की ऋणात्मक प्रवणता है, जिसके कारण :[6]
इस प्रकार, चूंकि दो निकट दूरी वाले विपरीत आवेश बिल्कुल आदर्श विद्युत द्विध्रुव नहीं हैं (क्योंकि कम दूरी पर उनकी क्षमता द्विध्रुव की तरह नहीं है), उनके पृथक्करण से बहुत बड़ी दूरी पर, उनका द्विध्रुव क्षण 'पी' सीधे उनकी क्षमता में दिखाई देता है और मैदान।
जैसे ही दोनों आवेशों को साथ करीब लाया जाता है (d को छोटा कर दिया जाता है), अनुपात d/R के आधार पर बहुध्रुव विस्तार में द्विध्रुव पद निकटतम दूरी R पर एकमात्र महत्वपूर्ण पद बन जाता है, और अनंत पृथक्करण की सीमा में द्विध्रुव पद इस विस्तार में ही सब कुछ मायने रखता है। चूँकि, चूँकि d को अतिसूक्ष्म बनाया गया है, इसलिए 'p' स्थिरांक को बनाए रखने के लिए द्विध्रुव आवेश को बढ़ाना होगा। इस सीमित प्रक्रिया का परिणाम बिंदु द्विध्रुव होता है।
द्विध्रुव आघूर्ण घनत्व और ध्रुवीकरण घनत्व
आवेशों की श्रृंखला का द्विध्रुव आघूर्ण,
सरणी की ध्रुवीयता की डिग्री निर्धारित करता है, किन्तु तटस्थ सरणी के लिए यह केवल सरणी का सदिश गुण है जिसमें सरणी के पूर्ण स्थान के बारे में कोई जानकारी नहीं होती है। सरणी 'p'('r') के द्विध्रुव आघूर्ण घनत्व में सरणी का स्थान और उसका द्विध्रुव आघूर्ण दोनों सम्मिलित होते हैं। जब सरणी वाले किसी क्षेत्र में विद्युत क्षेत्र की गणना करने का समय आता है, तब मैक्सवेल के समीकरण हल हो जाते हैं, और आवेश सरणी के बारे में जानकारी मैक्सवेल के समीकरणों के ध्रुवीकरण घनत्व 'पी' ('आर') में निहित होती है। इस बात पर निर्भर करते हुए कि विद्युत क्षेत्र का कितना बारीक मूल्यांकन आवश्यक है, आवेश सरणी के बारे में अधिक या कम जानकारी 'पी' ('आर') द्वारा व्यक्त की जानी होगी। जैसा कि नीचे बताया गया है, कभी-कभी 'पी'('आर') = 'पी'('आर') लेना पर्याप्त रूप से त्रुटिहीन होता है। कभी-कभी अधिक विस्तृत विवरण की आवश्यकता होती है (उदाहरण के लिए, अतिरिक्त चतुर्भुज घनत्व के साथ द्विध्रुव क्षण घनत्व को पूरक करना) और कभी-कभी 'पी' ('आर') के और भी अधिक विस्तृत संस्करण आवश्यक होते हैं।
वर्तमान यह पता लगाया जा रहा है कि मैक्सवेल के समीकरणों में प्रवेश करने वाला ध्रुवीकरण घनत्व 'पी' ('आर') किस तरह से आवेशों के समग्र तटस्थ सरणी के द्विध्रुव क्षण 'पी' से संबंधित है, और द्विध्रुव क्षण घनत्व 'पी' से भी संबंधित है। ('आर') (जो न केवल द्विध्रुवीय क्षण का वर्णन करता है, किंतु सरणी स्थान का भी वर्णन करता है)। निम्नलिखित में केवल स्थिर स्थितियों पर विचार किया जाता है, इसलिए 'पी'('आर') पर कोई समय निर्भरता नहीं है, और कोई विस्थापन धारा नहीं है। सबसे पहले ध्रुवीकरण घनत्व 'पी'('आर') की कुछ चर्चा है। उस चर्चा का अनुसरण अनेक विशिष्ट उदाहरणों के साथ किया जाता है।
मुक्त और बाध्य आवेशों और धाराओं में आवेशों और धाराओं के विभाजन के आधार पर मैक्सवेल के समीकरणों का सूत्रीकरण 'डी'- और 'पी'-क्षेत्रों की प्रारंभआत की ओर ले जाता है:
जहाँ P को ध्रुवीकरण घनत्व कहा जाता है। इस सूत्रीकरण में, इस समीकरण का विचलन उत्पन्न होता है:
और जैसा कि ई में विचलन शब्द कुल आवेश है, और ρ हैfनिःशुल्क शुल्क है, हमारे पास संबंध शेष है:
ρ के साथbबाउंड आवेश के रूप में, जिसका कारण कुल और मुक्त आवेश घनत्व के मध्य का अंतर है।
एक तरफ, चुंबकीय प्रभाव की अनुपस्थिति में, मैक्सवेल के समीकरण इसे निर्दिष्ट करते हैं
मान लीजिए कि आवेशों को मुक्त और बाध्य में विभाजित किया गया है, और क्षमता को विभाजित किया गया है
φ पर सीमा शर्तों की संतुष्टि को φ के मध्य इच्छानुसार से विभाजित किया जा सकता हैfऔर φbक्योंकि केवल योग φ को ही इन शर्तों को पूरा करना होगा। इससे यह निष्कर्ष निकलता है कि 'पी' विद्युत क्षेत्र के समानुपाती होता है क्योंकि आवेशों को सीमा के रूप में चुना जाता है, सीमा की स्थितियाँ सुविधाजनक सिद्ध होती हैं। विशेष रूप से, जब कोई निःशुल्क शुल्क उपस्तिथ नहीं है, तब संभावित विकल्प 'पी' = ε है0 इ।
आगे चर्चा की गई है कि माध्यम के अनेक भिन्न-भिन्न द्विध्रुव क्षण विवरण मैक्सवेल के समीकरणों में प्रवेश करने वाले ध्रुवीकरण से कैसे संबंधित हैं।
आवेश और द्विध्रुव घनत्व वाला माध्यम
जैसा कि आगे बताया गया है, ध्रुवीकरण क्षण घनत्व पी(आर) के लिए मॉडल के परिणामस्वरूप ध्रुवीकरण होता है
एक ही मॉडल तक सीमित। सुचारु रूप से भिन्न द्विध्रुव आघूर्ण वितरण पी(आर) के लिए, संबंधित बाध्य आवेश घनत्व बस है
जैसा कि हम भागों द्वारा एकीकरण के माध्यम से शीघ्र ही स्थापित करेंगे। चूँकि, यदि p(r) दो क्षेत्रों के मध्य की सीमा पर द्विध्रुव आघूर्ण में अचानक कदम प्रदर्शित करता है, तब ∇·p(r) के परिणामस्वरूप बाध्य आवेश का सतही आवेश घटक बनता है। इस सतह आवेश को सतह अभिन्न के माध्यम से, या सीमा पर असंततता स्थितियों का उपयोग करके इलाज किया जा सकता है, जैसा कि नीचे दिए गए विभिन्न उदाहरणों में दिखाया गया है।
द्विध्रुव आघूर्ण को ध्रुवीकरण से संबंधित पहले उदाहरण के रूप में, सतत आवेश घनत्व ρ(r) और सतत द्विध्रुव आघूर्ण वितरण p(r) से बने माध्यम पर विचार करें। स्थिति r पर क्षमता है:[8][9]
जहां ρ('r') अयुग्मित आवेश घनत्व है, और 'p'('r') द्विध्रुव आघूर्ण घनत्व है। पहचान का उपयोग करना:
ध्रुवीकरण अभिन्न को रूपांतरित किया जा सकता है:
जहां सदिश पहचान
अंतिम चरण में प्रयोग किया गया। पहले शब्द को एकीकरण की मात्रा को सीमित करने वाली सतह पर अभिन्न में परिवर्तित किया जा सकता है, और सतह आवेश घनत्व में योगदान देता है, जिस पर पश्चात् में चर्चा की गई है। इस परिणाम को संभावित में वापस लाना, और सतही आवेश को अभी के लिए अनदेखा करना:
जहां वॉल्यूम एकीकरण केवल बाउंडिंग सतह तक फैला हुआ है, और इसमें यह सतह सम्मिलित नहीं है।
क्षमता कुल आवेश द्वारा निर्धारित की जाती है, जिसमें उपरोक्त शो सम्मिलित हैं:
वह दिखा रहा हूँ:
संक्षेप में, द्विध्रुव आघूर्ण घनत्व p(r) इस माध्यम के लिए ध्रुवीकरण घनत्व P की भूमिका निभाता है। ध्यान दें, पी(आर) में बाध्य आवेश घनत्व के सामान्तर गैर-शून्य विचलन है (जैसा कि इस सन्निकटन में दर्शाया गया है)।
यह ध्यान दिया जा सकता है कि इस दृष्टिकोण को सभी बहुध्रुवों को सम्मिलित करने के लिए बढ़ाया जा सकता है: द्विध्रुव, चतुर्ध्रुव, आदि।[10][11] संबंध का उपयोग करना:
ध्रुवीकरण घनत्व पाया जाता है:
जहां जोड़े गए शब्द उच्च बहुध्रुवों से योगदान को इंगित करने के लिए हैं। प्रकट है, उच्च मल्टीपोल को सम्मिलित करने से पता चलता है कि ध्रुवीकरण घनत्व पी वर्तमान अकेले द्विध्रुवीय क्षण घनत्व पी द्वारा निर्धारित नहीं होता है। उदाहरण के लिए, आवेश ऐरे से बिखरने पर विचार करते समय, भिन्न-भिन्न मल्टीपोल विद्युत चुम्बकीय तरंग को भिन्न-भिन्न और स्वतंत्र रूप से प्रसारित करते हैं, जिसके लिए उन आवेशों के प्रतिनिधित्व की आवश्यकता होती है जो द्विध्रुव सन्निकटन से परे जाते हैं।[12][13]
सतह प्रभार
समान द्विध्रुवों की समान सारणी सतह आवेश के सामान्तर होती है।
ऊपर, द्विध्रुव के कारण विभव के व्यंजक में पहले पद के लिए चर्चा स्थगित कर दी गई थी। विचलन को एकीकृत करने से सतही आवेश उत्पन्न होता है। दाईं ओर का चित्र सहज विचार प्रदान करता है कि सतही आवेश क्यों उत्पन्न होता है। चित्र दो सतहों के मध्य समान द्विध्रुवों की समान सरणी दिखाता है। आंतरिक रूप से, द्विध्रुवों के शीर्ष और पूंछ आसन्न और रद्द होते हैं। चूँकि, बाउंडिंग सतहों पर कोई निरस्तता नहीं होता है। इसके अतिरिक्त, सतह पर द्विध्रुव सिर धनात्मक सतह आवेश बनाते हैं, जबकि विपरीत सतह पर द्विध्रुव सिर ऋणात्मक सतह आवेश बनाते हैं। यह दो विपरीत सतह आवेश द्विध्रुवों की दिशा के विपरीत दिशा में शुद्ध विद्युत क्षेत्र बनाते हैं।
उपरोक्त संभावित अभिव्यक्ति का उपयोग करके इस विचार को गणितीय रूप दिया गया है। मुफ़्त शुल्क को नज़रअंदाज करते हुए, संभावना यह है:
विचलन प्रमेय का उपयोग करते हुए, विचलन शब्द सतह अभिन्न में बदल जाता है:
डीए0 के साथ आयतन के सतह क्षेत्र का तत्व। इस घटना में कि पी(आर) स्थिरांक है, केवल सतही पद ही जीवित रहता है:
डीए0 के साथ आवेशों को घेरने वाली सतह का प्राथमिक क्षेत्र मेंं शब्दों के रूप में सतह के अंदर स्थिरांक p के कारण क्षमता सतह आवेश के सामान्तर होती है
जो पी की दिशा में घटक वाले सतह तत्वों के लिए धनात्मक है और विपरीत दिशा में निर्देशित सतह तत्वों के लिए ऋणात्मक है। (सामान्यतः किसी सतह तत्व की दिशा को तत्व के स्थान पर सतह के बाहरी सामान्य दिशा के रूप में लिया जाता है।)
यदि सीमाबद्ध सतह गोला है, और अवलोकन का बिंदु इस गोले के केंद्र में है, तब गोले की सतह पर एकीकरण शून्य है: संभावित निरस्तता में धनात्मक और ऋणात्मक सतह आवेश योगदान करते हैं। चूँकि, यदि अवलोकन का बिंदु केंद्र से बाहर है, तब शुद्ध क्षमता का परिणाम हो सकता है (स्थिति के आधार पर) क्योंकि धनात्मक और ऋणात्मक आवेश अवलोकन के बिंदु से भिन्न-भिन्न दूरी पर हैं। पृष्ठीय आवेश के कारण क्षेत्र है:
जो, गोलाकार सीमा सतह के केंद्र में शून्य नहीं है (केंद्र के विपरीत पक्षों पर ऋणात्मक और धनात्मक आवेश के क्षेत्र जुड़ते हैं क्योंकि दोनों क्षेत्र ही तरह से इंगित करते हैं) किंतु इसके अतिरिक्त है:[14]
यदि हम मानते हैं कि द्विध्रुव का ध्रुवीकरण किसी बाहरी क्षेत्र से प्रेरित था, तब ध्रुवीकरण क्षेत्र प्रयुक्त क्षेत्र का विरोध करता है और कभी-कभी इसे विध्रुवण क्षेत्र कहा जाता है।[15][16] ऐसे स्थितियों में जब ध्रुवीकरण गोलाकार गुहा के बाहर होता है, आसपास के द्विध्रुवों के कारण गुहा में क्षेत्र ध्रुवीकरण के समान दिशा में होता है।
विशेष रूप से, यदि विद्युत संवेदनशीलता को सन्निकटन के माध्यम से प्रस्तुतकिया जाता है:
कहाँ E, इस स्थितियों में और निम्नलिखित में, बाहरी क्षेत्र का प्रतिनिधित्व करते हैं जो ध्रुवीकरण को प्रेरित करता है।
तब:
जब भी χ('r') का उपयोग दो क्षेत्रों के मध्य की सीमा पर चरण असंततता को मॉडल करने के लिए किया जाता है, तब चरण सतह आवेश परत उत्पन्न करता है। उदाहरण के लिए, सतह के ठीक अंदर वाले बिंदु से बाहरी सतह के दूसरे बिंदु तक सामान्य से बाउंडिंग सतह तक एकीकृत करना:
जहाँ An, Ωn क्षेत्रों के मध्य की सीमा तक फैले प्रारंभिक क्षेत्र के क्षेत्र और आयतन को इंगित करें, और सतह पर सामान्य इकाई. जैसे ही आयतन घटता है, दाहिना भाग गायब हो जाता है, यहाँ तक कि ρ तकb परिमित है, जो ई में असंततता को दर्शाता है, और इसलिए सतही आवेश है। अर्थात्, जहां प्रतिरूपित माध्यम में पारगम्यता का चरण सम्मिलित होता है, वहां द्विध्रुव आघूर्ण घनत्व के अनुरूप ध्रुवीकरण घनत्व होता है
इसमें आवश्यक रूप से सतही आवेश का योगदान सम्मिलित होता है।[17][18][19]
पी(आर) के भौतिक रूप से अधिक यथार्थवादी मॉडलिंग में द्विध्रुव क्षण घनत्व तेजी से गिर जाएगा, किन्तु शून्य घनत्व की ओर अचानक कदम उठाने के अतिरिक्त, सीमित क्षेत्र की सीमा पर आसानी से शून्य हो जाएगा। तब सतह आवेश उच्चतम रूप से पतली सतह में केंद्रित नहीं होगा, किंतु इसके अतिरिक्त, सुचारू रूप से भिन्न द्विध्रुवीय क्षण घनत्व का विचलन होने के कारण, स्वयं को पतली, किन्तु सीमित संक्रमण परत में वितरित कर देगा।
एक समान बाह्य विद्युत क्षेत्र में अचालक क्षेत्र
ई-क्षेत्र (दिखाया नहीं गया) हर स्थान डी-क्षेत्र के साथ मेल खाता है, किन्तु गोले के अंदर, उनका घनत्व कम है, इस तथ्य के अनुरूप कि ई-क्षेत्र क्षेत्र के अंदर अशक्त है बाहर से. अनेक बाहरी ई-क्षेत्र रेखाएँ गोले की सतह पर समाप्त होती हैं, जहाँ बाध्य आवेश होता है।
सतह आवेश के बारे में उपरोक्त सामान्य टिप्पणियाँ समान विद्युत क्षेत्र में ढांकता हुआ क्षेत्र के उदाहरण पर विचार करके अधिक ठोस बनाई गई हैं।[20][21] यह पाया गया है कि गोला अपने आंतरिक भाग के द्विध्रुवीय क्षण से संबंधित सतह आवेश को अपनाता है।
एक समान बाहरी विद्युत क्षेत्र को z-दिशा में इंगित करना माना जाता है, और गोलाकार-ध्रुवीय निर्देशांक प्रस्तुतकिए जाते हैं, इसलिए इस क्षेत्र द्वारा बनाई गई क्षमता है:
और गोले के अंदर की क्षमता लाप्लास के समीकरण को संतुष्ट करती है। कुछ विवरणों को छोड़ दें तब क्षेत्र के अंदर समाधान यह है:
जबकि क्षेत्र के बाहर:
बड़ी दूरी पर, φ> → एफ∞ इसलिए बी = −ई∞ . विभव की निरंतरता और विस्थापन के रेडियल घटक 'डी' = κε0ई अन्य दो स्थिरांक निर्धारित करते हैं। मान लीजिए कि गोले की त्रिज्या R है,
परिणामस्वरूप, संभावना यह है:
जो प्रयुक्त क्षेत्र के कारण संभावित है और, इसके अतिरिक्त, प्रयुक्त क्षेत्र की दिशा में द्विध्रुवीय (जेड-दिशा) द्विध्रुव क्षण का है:
या, प्रति इकाई आयतन:
कारक (κ - 1)/(κ + 2) को क्लॉसियस-मोसोटी संबंध कहा जाता है | क्लॉसियस-मोसोटी कारक और दिखाता है कि प्रेरित ध्रुवीकरण संकेत फ़्लिप करता है यदि κ < 1. इस उदाहरण में ऐसा नहीं हो सकता है, किन्तु दो भिन्न-भिन्न डाइलेक्ट्रिक्स के साथ उदाहरण κ को आंतरिक और बाहरी क्षेत्र के ढांकता हुआ स्थिरांक के अनुपात से प्रतिस्थापित किया जाता है, जो से अधिक या छोटा हो सकता है। गोले के अंदर की क्षमता है:
गोले के अंदर मैदान की ओर ले जाना:
द्विध्रुव का विध्रुवण प्रभाव दिखा रहा है। ध्यान दें कि गोले के अंदर का क्षेत्र समान है और प्रयुक्त क्षेत्र के समानांतर है। द्विध्रुव आघूर्ण गोले के संपूर्ण आंतरिक भाग में समान होता है। गोले पर सतह आवेश घनत्व रेडियल क्षेत्र घटकों के मध्य का अंतर है:
यह रैखिक ढांकता हुआ उदाहरण दर्शाता है कि ढांकता हुआ निरंतर उपचार एकसमान द्विध्रुव क्षण मॉडल के सामान्तर है और गोले की सीमा पर सतह आवेश को छोड़कर हर स्थान शून्य आवेश होता है।
सामान्य मीडिया
यदि अवलोकन आवेशों की प्रणाली से पर्याप्त रूप से दूर के क्षेत्रों तक ही सीमित है, तब त्रुटिहीन ध्रुवीकरण घनत्व का बहुध्रुवीय विस्तार किया जा सकता है। इस विस्तार को छोटा करके (उदाहरण के लिए, केवल द्विध्रुव पदों को, या केवल द्विध्रुव और चतुष्कोण पदों को, या आदि को बनाए रखते हुए), पिछले अनुभाग के परिणाम पुनः प्राप्त हो जाते हैं। विशेष रूप से, द्विध्रुवीय पद पर विस्तार को छोटा करते हुए, परिणाम आवेश क्षेत्र तक सीमित समान द्विध्रुवीय क्षण द्वारा उत्पन्न ध्रुवीकरण घनत्व से अप्रभेद्य होता है। इस द्विध्रुव सन्निकटन की त्रुटिहीनता के लिए, जैसा कि पिछले अनुभाग में दिखाया गया है, द्विध्रुव क्षण घनत्व 'पी'('आर') (जिसमें न केवल 'पी' किंतु 'पी' का स्थान भी सम्मिलित है) 'पी'(' आर')।
आवेश सरणी के अंदर के स्थानों पर, युग्मित आवेश की सरणी को केवल द्विध्रुवीय क्षण घनत्व 'पी' ('आर') वाले सन्निकटन से जोड़ने के लिए अतिरिक्त विचारों की आवश्यकता होती है। सबसे सरल सन्निकटन आवेश सारणी को आदर्श (असीमित दूरी वाले) द्विध्रुवों के मॉडल से बदलना है। विशेष रूप से, जैसा कि ऊपर दिए गए उदाहरण में परिमित क्षेत्र तक सीमित निरंतर द्विध्रुव आघूर्ण घनत्व का उपयोग किया जाता है, सतह आवेश और विध्रुवण क्षेत्र का परिणाम होता है। इस प्रकार मॉडल का अधिक सामान्य संस्करण (जो स्थिति के साथ ध्रुवीकरण को भिन्न-भिन्न करने की अनुमति देता है) विद्युत संवेदनशीलता या विद्युत पारगम्यता का उपयोग करने वाला पारंपरिक दृष्टिकोण है।
बिंदु आवेश सारणी का अधिक समष्टि मॉडल सूक्ष्म आवेशों के औसत द्वारा प्रभावी माध्यम सन्निकटन प्रस्तुत करता है;[16] उदाहरण के लिए, औसत यह व्यवस्था कर सकता है कि केवल द्विध्रुवीय क्षेत्र ही भूमिका निभाते हैं।[22][23] संबंधित दृष्टिकोण यह है कि आवेशों को अवलोकन बिंदु के निकट के आवेशों में विभाजित किया जाए, और उन आवेशों को जो बहुध्रुवीय विस्तार की अनुमति देने के लिए पर्याप्त दूर हों। फिर निकटवर्ती आवेश स्थानीय क्षेत्र प्रभावों को जन्म देते हैं।[14][24] इस प्रकार के सामान्य मॉडल में, दूर के आवेशों को ढांकता हुआ स्थिरांक का उपयोग करके सजातीय माध्यम के रूप में माना जाता है, और पास के आवेशों को केवल द्विध्रुवीय सन्निकटन में माना जाता है।[25] केवल द्विध्रुवों और उनसे संबंधित द्विध्रुव आघूर्ण घनत्व द्वारा किसी माध्यम या आवेशों की सारणी के सन्निकटन को कभी-कभी बिंदु द्विध्रुव सन्निकटन, असतत द्विध्रुव सन्निकटन, या केवल द्विध्रुव सन्निकटन कहा जाता है।[26][27][28]
मौलिक कणों के विद्युत द्विध्रुव आघूर्ण
स्पिन (भौतिकी) के साथ भ्रमित न हों जो कणों के चुंबकीय द्विध्रुव क्षणों को संदर्भित करता है, मौलिक और मिश्रित कणों, अर्थात् इलेक्ट्रॉन के विद्युत द्विध्रुव क्षणों (ईडीएम; या विषम विद्युत द्विध्रुव क्षण) को मापने पर बहुत प्रयोगात्मक कार्य जारी है। इस प्रकार क्रमशः विद्युत द्विध्रुव आघूर्ण और न्यूट्रॉन विद्युत द्विध्रुव आघूर्ण। चूंकि ईडीएम समता (भौतिकी) (पी) और टी-समरूपता समय-उत्क्रमण (टी) समरूपता दोनों का उल्लंघन करते हैं, उनके मूल्य प्रकृति में सीपी-उल्लंघन का अधिकतर मॉडल-स्वतंत्र माप उत्पन्न करते हैं (सीपीटी समरूपता वैध है)।[29] इसलिए, इन ईडीएम के मान सीपी-उल्लंघन के पैमाने पर शक्तिशाली बाधाएं डालते हैं जो कण भौतिकी के मानक मॉडल के विस्तार की अनुमति दे सकते हैं। प्रयोगों की वर्तमान पीढ़ियों को ईडीएम की अतिसममिति रेंज के प्रति संवेदनशील बनाने के लिए डिज़ाइन किया गया है, जो एलएचसी पर किए गए पूरक प्रयोगों को प्रदान करता है।[30]
वास्तव में, अनेक सिद्धांत वर्तमान सीमाओं के साथ असंगत हैं और उन्हें प्रभावी ढंग से खारिज कर दिया गया है, और स्थापित सिद्धांत इन सीमाओं से कहीं अधिक बड़े मूल्य की अनुमति देता है, जिससे शक्तिशाली सीपी समस्या उत्पन्न होती है और अक्षतंतु जैसे नए कणों की खोज को बढ़ावा मिलता है।[31]
हम कम से कम सेतो युकावा में तटस्थ काओन दोलनों से जानते हैं कि सीपी टूट गया है। इलेक्ट्रॉन और न्यूट्रॉन जैसे विभिन्न कणों के विद्युत द्विध्रुव क्षण को मापने के लिए प्रयोग किए गए हैं। इसके अतिरिक्त सीपी-उल्लंघन शर्तों के साथ मानक मॉडल से परे अनेक मॉडल सामान्य रूप से गैर-शून्य विद्युत द्विध्रुवीय क्षण की भविष्यवाणी करते हैं और इसलिए ऐसी नई भौतिकी के प्रति संवेदनशील होते हैं। क्वांटम क्रोमोडायनामिक्स में गैर-शून्य θ शब्द से पल सुधार न्यूट्रॉन और प्रोटॉन के लिए गैर-शून्य विद्युत द्विध्रुवीय क्षण की भविष्यवाणी करते हैं, जो प्रयोगों में नहीं देखा गया है (जहां सबसे अच्छी सीमाएं न्यूट्रॉन के विश्लेषण से आती हैं)। यह शक्तिशाली सीपी समस्या है और चिरल अस्तव्यस्तता सिद्धांत की भविष्यवाणी है।
अणुओं के द्विध्रुव आघूर्ण
द्विध्रुव#आण्विक द्विध्रुव बाहरी विद्युत क्षेत्रों की उपस्थिति में किसी पदार्थ के व्यवहार के लिए उत्तरदायी होते हैं। इस प्रकार द्विध्रुव बाहरी क्षेत्र से संरेखित होते हैं जो स्थिर या समय पर निर्भर हो सकते हैं। यह प्रभाव ढांकता हुआ स्पेक्ट्रोस्कोपी नामक आधुनिक प्रायोगिक विधि का आधार बनता है।
द्विध्रुव क्षण पानी जैसे सामान्य अणुओं और प्रोटीन जैसे जैव अणुओं में भी पाए जा सकते हैं।[32]
किसी सामग्री के कुल द्विध्रुव क्षण के माध्यम से कोई ढांकता हुआ स्थिरांक की गणना कर सकता है जो चालकता की अधिक सहज अवधारणा से संबंधित है। यदि नमूने का कुल द्विध्रुव आघूर्ण है, तब ढांकता हुआ स्थिरांक द्वारा दिया जाता है,
जहाँ k स्थिरांक है और कुल द्विध्रुव आघूर्ण का समय सहसंबंध फलन है। इस प्रकार सामान्यतः कुल द्विध्रुव आघूर्ण में योगदान आता रहता है
नमूने में अणुओं के अनुवाद और घूर्णन से,
इसलिए, ढांकता हुआ स्थिरांक (और चालकता) में दोनों पदों का योगदान होता है। आवृत्ति पर निर्भर ढांकता हुआ वेरिएबल की गणना करने के लिए इस दृष्टिकोण को सामान्यीकृत किया जा सकता है।[33]इलेक्ट्रॉनिक संरचना से द्विध्रुव क्षणों की गणना करना संभव है, या तब निरंतर विद्युत क्षेत्रों की प्रतिक्रिया के रूप में या घनत्व आव्युह से।[34] चूँकि, परमाणु क्वांटम प्रभावों की संभावित उपस्थिति के कारण ऐसे मूल्य सीधे प्रयोग के लिए तुलनीय नहीं हैं, जो अमोनिया अणु जैसी सरल प्रणालियों के लिए भी पर्याप्त हो सकते हैं।[35]युग्मित क्लस्टर (विशेषकर सीसीएसडी(टी)[36]) बहुत त्रुटिहीन द्विध्रुव आघूर्ण दे सकता है,[37] यद्यपि घनत्व कार्यात्मक सिद्धांत से उचित अनुमान (लगभग 5% के अंदर) प्राप्त करना संभव है, मुख्य रूप से यदि हाइब्रिड कार्यात्मक या डबल हाइब्रिड कार्यात्मक कार्यरत हैं।[38] इस प्रकार किसी अणु के द्विध्रुव क्षण की गणना समूह योगदान विधियों की अवधारणा का उपयोग करके आणविक संरचना के आधार पर भी की जा सकती है।[39]
↑EM Purcell; CR Pennypacker (1973). "गैरगोलाकार ढांकता हुआ अनाज द्वारा प्रकाश का प्रकीर्णन और अवशोषण". Astrophysical Journal. 186: 705–714. Bibcode:1973ApJ...186..705P. doi:10.1086/152538.
↑Khriplovich, Iosip B.; Lamoreaux, Steve K. (2012). CP violation without strangeness : electric dipole moments of particles, atoms, and molecules. [S.l.]: Springer. ISBN978-3-642-64577-8.
↑Y. Shim; H. Kim (2008). "कमरे के तापमान वाले आयनिक तरल में ढांकता हुआ विश्राम, आयन चालकता, विलायक रोटेशन, और विलायक गतिशीलता". J. Phys. Chem. B. 112 (35): 11028–11038. doi:10.1021/jp802595r. PMID18693693.
↑Frank., Jensen (2007). कम्प्यूटेशनल रसायन विज्ञान का परिचय (2nd ed.). Chichester, England: John Wiley & Sons. ISBN9780470011874. OCLC70707839.
↑Puzzarini, Cristina (2008-09-01). "Ab initio characterization of XH3 (X = N,P). Part II. Electric, magnetic and spectroscopic properties of ammonia and phosphine". Theoretical Chemistry Accounts (in English). 121 (1–2): 1–10. doi:10.1007/s00214-008-0409-8. ISSN1432-881X. S2CID98782005.
↑Raghavachari, Krishnan; Trucks, Gary W.; Pople, John A.; Head-Gordon, Martin (1989). "इलेक्ट्रॉन सहसंबंध सिद्धांतों की पांचवें क्रम की गड़बड़ी तुलना". Chemical Physics Letters. 157 (6): 479–483. Bibcode:1989CPL...157..479R. doi:10.1016/s0009-2614(89)87395-6.
↑Hait, Diptarka; Head-Gordon, Martin (2018-03-21). "How Accurate Is Density Functional Theory at Predicting Dipole Moments? An Assessment Using a New Database of 200 Benchmark Values". Journal of Chemical Theory and Computation (in English). 14 (4): 1969–1981. arXiv:1709.05075. doi:10.1021/acs.jctc.7b01252. PMID29562129. S2CID4391272.
↑K. Müller; L. Mokrushina; W. Arlt (2012). "द्विध्रुवीय क्षण के निर्धारण के लिए द्वितीय-क्रम समूह योगदान विधि". J. Chem. Eng. Data. 57 (4): 1231–1236. doi:10.1021/je2013395.