सहसंयोजक सिद्धांत

From Vigyanwiki
Revision as of 19:45, 14 August 2023 by alpha>Indicwiki (Created page with "{{short description|Model for tracing the history of genetic variation}} कोलेसेंट सिद्धांत एक वैज्ञानिक मॉडलि...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

कोलेसेंट सिद्धांत एक वैज्ञानिक मॉडलिंग है कि कैसे किसी आबादी से लिए गए जेनेटिक तत्व सबसे हाल के सामान्य पूर्वज से उत्पन्न हुए होंगे। सबसे सरल मामले में, सहसंयोजक सिद्धांत कोई आनुवंशिक पुनर्संयोजन, कोई प्राकृतिक चयन और कोई जीन प्रवाह या जनसंख्या संरचना (आनुवांशिकी) नहीं मानता है, जिसका अर्थ है कि प्रत्येक संस्करण के एक पीढ़ी से दूसरी पीढ़ी तक समान रूप से पारित होने की संभावना है। मॉडल समय में पीछे की ओर दिखता है, सहसंयोजन घटनाओं में एक यादृच्छिक प्रक्रिया के अनुसार एलील्स को एक पैतृक प्रतिलिपि में विलय कर देता है। इस मॉडल के तहत, क्रमिक सहसंयोजन घटनाओं के बीच अपेक्षित समय लगभग तेजी से बढ़ता है (व्यापक भिन्नता के साथ)। मॉडल में भिन्नता एलील्स के एक पीढ़ी से दूसरी पीढ़ी तक यादृच्छिक रूप से गुजरने और इन एलील्स में उत्परिवर्तन की यादृच्छिक घटना दोनों से आती है।

सहसंयोजक का गणितीय सिद्धांत 1980 के दशक की शुरुआत में शास्त्रीय जनसंख्या आनुवंशिकी सिद्धांत और मॉडल के प्राकृतिक विस्तार के रूप में कई समूहों द्वारा स्वतंत्र रूप से विकसित किया गया था,[1][2][3][4] लेकिन इसका श्रेय मुख्य रूप से जॉन किंगमैन को दिया जा सकता है।[5] सहसंयोजक सिद्धांत में प्रगति में पुनर्संयोजन, चयन, अतिव्यापी पीढ़ियाँ और जनसंख्या आनुवंशिक विश्लेषण में वस्तुतः कोई भी मनमाने ढंग से जटिल विकासवादी या जनसांख्यिकीय मॉडल शामिल हैं।

मॉडल का उपयोग कई सैद्धांतिक वंशावली तैयार करने के लिए किया जा सकता है, और फिर किसी आबादी के जनसांख्यिकीय इतिहास के बारे में धारणाओं का परीक्षण करने के लिए इन सिमुलेशन में देखे गए डेटा की तुलना की जा सकती है। सहसंयोजक सिद्धांत का उपयोग जनसंख्या आनुवंशिक मापदंडों, जैसे प्रवासन, जनसंख्या आकार और पुनर्संयोजन के बारे में अनुमान लगाने के लिए किया जा सकता है।

सिद्धांत

संयोजन का समय

किसी जनसंख्या में दो अगुणित व्यक्तियों से लिए गए एकल जीन स्थान पर विचार करें। इस नमूने की वंशावली समय में पीछे की ओर उस बिंदु तक खोजी जाती है जहां ये दोनों वंश अपने सबसे हाल के सामान्य पूर्वज (एमआरसीए) में मिलते हैं। सहसंयोजक सिद्धांत इस समयावधि की अपेक्षा और इसके विचरण का अनुमान लगाना चाहता है।

संभावना यह है कि दो वंश (विकास) ठीक पूर्ववर्ती पीढ़ी में एकजुट होते हैं, यह संभावना है कि वे माता-पिता के डीएनए अनुक्रम को साझा करते हैं। 2N के साथ निरंतर प्रभावी जनसंख्या आकार वाली जनसंख्या मेंeप्रत्येक स्थान की प्रतियां, 2N हैंeपिछली पीढ़ी में संभावित माता-पिता। एक यादृच्छिक संभोग मॉडल के तहत, संभावना है कि दो एलील एक ही पैतृक प्रति से उत्पन्न होते हैं, इस प्रकार 1/(2N) हैe) और, तदनुसार, संभावना है कि वे एकजुट नहीं होंगे 1 − 1/(2Ne).

प्रत्येक क्रमिक पूर्ववर्ती पीढ़ी में, सहसंयोजन की संभावना ज्यामितीय वितरण होती है - अर्थात, यह t - 1 पूर्ववर्ती पीढ़ियों पर गैर-संयोजन की संभावना को ब्याज की पीढ़ी पर सहसंयोजन की संभावना से गुणा किया जाता है:

एन के पर्याप्त बड़े मूल्यों के लिएe, यह वितरण निरंतर परिभाषित घातीय वितरण द्वारा अच्छी तरह से अनुमानित है

यह गणितीय रूप से सुविधाजनक है, क्योंकि मानक घातांकीय वितरण में अपेक्षित मान और मानक विचलन दोनों 2N के बराबर होते हैंe. इसलिए, यद्यपि सहसंयोजन का अपेक्षित समय 2N हैe, वास्तविक सहसंयोजन समय में भिन्नता की एक विस्तृत श्रृंखला होती है। ध्यान दें कि सहसंयोजक समय पिछली पीढ़ियों की संख्या है जहां सहसंयोजन हुआ था, न कि कैलेंडर समय, हालांकि बाद का अनुमान 2N से गुणा करके लगाया जा सकता हैeपीढ़ियों के बीच औसत समय के साथ। उपरोक्त गणना प्रभावी आकार N की द्विगुणित जनसंख्या पर समान रूप से लागू होती हैe(दूसरे शब्दों में, डीएनए के एक गैर-पुनर्संयोजन खंड के लिए, प्रत्येक गुणसूत्र को एक स्वतंत्र अगुणित व्यक्ति के बराबर माना जा सकता है; इनब्रीडिंग की अनुपस्थिति में, एक एकल व्यक्ति में बहन गुणसूत्र यादृच्छिक रूप से नमूना किए गए दो गुणसूत्रों से अधिक निकटता से संबंधित नहीं होते हैं आबादी)। हालाँकि, कुछ प्रभावी रूप से अगुणित डीएनए तत्व, जैसे कि माइटोकॉन्ड्रियल डीएनए, केवल एक लिंग द्वारा पारित होते हैं, और इसलिए समतुल्य द्विगुणित आबादी (एन) के प्रभावी आकार का एक चौथाई होता है।e/2)

तटस्थ भिन्नता

आनुवंशिक बहाव और उत्परिवर्तन से अपेक्षित डीएनए अनुक्रमों में भिन्नता की मात्रा को मॉडल करने के लिए सहसंयोजक सिद्धांत का भी उपयोग किया जा सकता है। इस मान को माध्य विषम कहा जाता है, जिसे इस रूप में दर्शाया जाता है . माध्य विषमयुग्मजीता की गणना किसी दी गई पीढ़ी में होने वाले उत्परिवर्तन की संभावना को उस पीढ़ी में किसी भी घटना की संभावना (या तो उत्परिवर्तन या सहसंयोजन) से विभाजित करके की जाती है। यह संभावना कि घटना एक उत्परिवर्तन है, दो वंशों में से किसी एक में उत्परिवर्तन की संभावना है: . इस प्रकार माध्य विषमयुग्मजीता के बराबर है

के लिए , अधिकांश एलील युग्मों में न्यूक्लियोटाइड अनुक्रम में कम से कम एक अंतर होता है।

एक्सटेंशन

सहसंयोजक मॉडल में कई विस्तार हैं, जैसे कि Λ-सहसंयोजक जो बहुविभाजन की संभावना की अनुमति देता है[6].

चित्रमय प्रतिनिधित्व

डेंड्रोग्राम का उपयोग करके सहसंयोजकों की कल्पना की जा सकती है जो जनसंख्या की शाखाओं का एक दूसरे से संबंध दर्शाते हैं। वह बिंदु जहां दो शाखाएं मिलती हैं, एक सहसंयोजक घटना को इंगित करती हैं।

अनुप्रयोग

रोग जीन मानचित्रण

रोग के मानचित्रण में सहसंयोजक सिद्धांत की उपयोगिता धीरे-धीरे अधिक सराहना प्राप्त कर रही है; यद्यपि सिद्धांत का अनुप्रयोग अभी भी अपनी प्रारंभिक अवस्था में है, ऐसे कई शोधकर्ता हैं जो सक्रिय रूप से मानव आनुवंशिक डेटा के विश्लेषण के लिए एल्गोरिदम विकसित कर रहे हैं जो सहसंबद्ध सिद्धांत का उपयोग करते हैं।[7][8][9]

मानव रोगों की एक बड़ी संख्या को आनुवंशिकी के लिए जिम्मेदार ठहराया जा सकता है, जिसमें सिकल-सेल रोग|सिकल-सेल एनीमिया और पुटीय तंतुशोथ जैसी साधारण मेंडेलियन वंशानुगत बीमारियों से लेकर कैंसर और मानसिक बीमारियों जैसी अधिक जटिल विकृतियाँ शामिल हैं। उत्तरार्द्ध पॉलीजेनिक रोग हैं, जो कई जीनों द्वारा नियंत्रित होते हैं जो विभिन्न गुणसूत्रों पर हो सकते हैं, लेकिन जो रोग एक ही असामान्यता से उत्पन्न होते हैं, उन्हें इंगित करना और पता लगाना अपेक्षाकृत सरल होता है - हालांकि इतना सरल नहीं है कि यह सभी रोगों के लिए हासिल किया जा सके। इन बीमारियों और उनकी प्रक्रियाओं को समझने में यह जानना बेहद उपयोगी है कि वे गुणसूत्रों पर कहाँ स्थित हैं, और उन्हें एक परिवार की पीढ़ियों के माध्यम से कैसे विरासत में मिला है, जैसा कि सहसंबद्ध विश्लेषण के माध्यम से पूरा किया जा सकता है।[1] आनुवंशिक बीमारियाँ अन्य जीनों की तरह ही एक पीढ़ी से दूसरी पीढ़ी में स्थानांतरित होती रहती हैं। जबकि किसी भी जीन को समजातीय पुनर्संयोजन के दौरान एक गुणसूत्र से दूसरे में स्थानांतरित किया जा सकता है, यह संभावना नहीं है कि अकेले एक जीन को स्थानांतरित किया जाएगा। इस प्रकार, अन्य जीन जो रोग जीन के इतने करीब हैं कि उससे आनुवंशिक जुड़ाव हो, उसका पता लगाने के लिए उपयोग किया जा सकता है।[1]

पॉलीजेनिक बीमारियों का आनुवंशिक आधार होता है, भले ही वे मेंडेलियन वंशानुक्रम मॉडल का पालन नहीं करते हैं, और आबादी में इनकी घटना अपेक्षाकृत अधिक हो सकती है, और स्वास्थ्य पर गंभीर प्रभाव पड़ सकता है। इस तरह की बीमारियों में अधूरा प्रवेश हो सकता है, और पॉलीजीन होने की प्रवृत्ति होती है, जिससे उनका अध्ययन जटिल हो जाता है। ये लक्षण कई छोटे-छोटे उत्परिवर्तनों के कारण उत्पन्न हो सकते हैं, जो मिलकर व्यक्ति के स्वास्थ्य पर गंभीर और हानिकारक प्रभाव डालते हैं।[2] कोलेसेंट सिद्धांत सहित लिंकेज मैपिंग विधियों को इन बीमारियों पर काम करने के लिए रखा जा सकता है, क्योंकि वे यह पता लगाने के लिए पारिवारिक वंशावली का उपयोग करते हैं कि कौन से मार्कर किसी बीमारी के साथ होते हैं, और यह कैसे विरासत में मिला है। कम से कम, यह विधि जीनोम के उस हिस्से को कम करने में मदद करती है, जिस पर हानिकारक उत्परिवर्तन हो सकते हैं। इन दृष्टिकोणों में जटिलताओं में एपिस्टासिस प्रभाव, उत्परिवर्तन की पॉलीजेनिक प्रकृति और पर्यावरणीय कारक शामिल हैं। जैसा कि कहा गया है, जिन जीनों का प्रभाव योगात्मक होता है उनमें रोग विकसित होने का एक निश्चित जोखिम होता है, और जब वे किसी रोग के जीनोटाइप में मौजूद होते हैं, तो उनका उपयोग जोखिम की भविष्यवाणी करने और जीन को मैप करने के लिए किया जा सकता है।[2]रोग जीन को समझने के लिए नियमित सहसंयोजक और टूटे हुए सहसंयोजक दोनों (जो अनुमति देता है कि संस्थापक घटना में कई उत्परिवर्तन हो सकते हैं, और यह कि बीमारी कभी-कभी पर्यावरणीय कारकों से उत्पन्न हो सकती है) को काम में लगाया गया है।[1]

भाईचारे और समान जुड़वाँ बच्चों में रोग की घटना को सहसंबंधित करने के लिए अध्ययन किए गए हैं, और इन अध्ययनों के परिणामों का उपयोग कोलेसेंट मॉडलिंग को सूचित करने के लिए किया जा सकता है। चूँकि एक जैसे जुड़वाँ अपने सभी जीनोम साझा करते हैं, लेकिन भाई-बहन वाले जुड़वाँ अपने जीनोम का केवल आधा हिस्सा साझा करते हैं, समान और भाई-बहन जुड़वाँ के बीच सहसंबंध में अंतर का उपयोग यह पता लगाने के लिए किया जा सकता है कि क्या कोई बीमारी वंशानुगत है, और यदि है तो कितनी प्रबल है।[2]


विषमयुग्मजीता का जीनोमिक वितरण

मानव एकल-न्यूक्लियोटाइड बहुरूपता (एसएनपी) मानचित्र ने विषमयुग्मजीता में बड़े क्षेत्रीय बदलावों का खुलासा किया है, जो कि (पॉइसन वितरण | पॉइसन-वितरित) यादृच्छिक अवसर के आधार पर समझाया जा सकता है।[10] आंशिक रूप से, इन विविधताओं को मूल्यांकन विधियों, जीनोमिक अनुक्रमों की उपलब्धता और संभवतः मानक सहसंबद्ध जनसंख्या आनुवंशिक मॉडल के आधार पर समझाया जा सकता है। जनसंख्या आनुवंशिक प्रभाव इस भिन्नता पर एक बड़ा प्रभाव डाल सकते हैं: कुछ लोकी में संभवतः हाल ही के सामान्य पूर्वज होंगे, अन्य में बहुत पुरानी वंशावली हो सकती हैं, और इसलिए समय के साथ एसएनपी का क्षेत्रीय संचय काफी भिन्न हो सकता है। गुणसूत्रों के साथ एसएनपी का स्थानीय घनत्व टेलर के नियम के अनुसार और ट्वीडी वितरण का पालन करते हुए क्लस्टर होता प्रतीत होता है।[11] इस मॉडल में एसएनपी मानचित्र में क्षेत्रीय विविधताओं को पुनर्संयोजन के माध्यम से कई छोटे जीनोमिक खंडों के संचय द्वारा समझाया जाएगा, जहां प्रति खंड एसएनपी की औसत संख्या सबसे हाल के सामान्य पूर्वज को गामा वितरित समय के अनुपात में गामा वितरण होगी। प्रत्येक खंड के लिए.[12]

इतिहास

सहसंयोजक सिद्धांत तटस्थ विकास की अधिक शास्त्रीय जनसंख्या आनुवंशिकी अवधारणा का एक प्राकृतिक विस्तार है और बड़ी आबादी के लिए आनुवंशिक बहाव#राइट-फिशर मॉडल|फिशर-राइट (या राइट-फिशर) मॉडल का एक अनुमान है। इसकी खोज 1980 के दशक में कई शोधकर्ताओं द्वारा स्वतंत्र रूप से की गई थी।[13][14][15][16]

सॉफ़्टवेयर

सॉफ्टवेयर का एक बड़ा समूह सहसंबद्ध प्रक्रिया के तहत डेटा सेटों के अनुकरण के साथ-साथ आनुवंशिक डेटा से जनसंख्या के आकार और प्रवासन दर जैसे मापदंडों का अनुमान लगाने के लिए मौजूद है।

  • BEAST और BEAST 2 - मार्कोव श्रृंखला मोंटे कार्लो के माध्यम से बायेसियन अनुमान अनुमान पैकेज, अस्थायी रूप से नमूना अनुक्रमों के उपयोग सहित सहसंयोजक मॉडल की एक विस्तृत श्रृंखला के साथ।[17]
  • BPP - एक बहुप्रजाति सहसंबद्ध प्रक्रिया के तहत आबादी के बीच फाइलोजेनी और विचलन समय का अनुमान लगाने के लिए सॉफ्टवेयर पैकेज।
  • CoaSim - सहसंयोजक मॉडल के तहत आनुवंशिक डेटा का अनुकरण करने के लिए सॉफ्टवेयर।
  • DIYABC - आणविक मार्करों का उपयोग करके जनसंख्या इतिहास के अनुमान के लिए अनुमानित बायेसियन गणना के लिए एक उपयोगकर्ता-अनुकूल दृष्टिकोण।[18]
  • डेंड्रॉपी - फाइलोजेनेटिक कंप्यूटिंग के लिए एक पायथन लाइब्रेरी, जिसमें शुद्ध (अप्रतिबंधित) सहसंयोजक पेड़ों के साथ-साथ बहुप्रजाति सहसंयोजक मॉडल (यानी, जीन पेड़) के तहत प्रतिबंधित सहसंयोजक पेड़ों का अनुकरण करने के लिए कक्षाएं और तरीके हैं। प्रजातियों के पेड़ों में)।
  • GeneRecon - रोग जीन के संयोजन असंतुलन मैपिंग के बारीक पैमाने पर मैपिंग के लिए सॉफ्टवेयर बायेसियन अनुमान मार्कोव श्रृंखला मोंटे कार्लो ढांचे पर आधारित सहसंयोजक सिद्धांत का उपयोग करना।
  • जेनेट्री सहसंयोजक सिद्धांत और सिमुलेशन (आर (प्रोग्रामिंग भाषा) पैकेज पॉपजेन) का उपयोग करके जनसंख्या आनुवंशिकी मापदंडों के आकलन के लिए सॉफ्टवेयर। यह भी देखें ऑक्सफोर्ड गणितीय आनुवंशिकी और जैव सूचना विज्ञान समूह
  • GENOME - तीव्र सहसंयोजक-आधारित संपूर्ण-जीनोम सिमुलेशन[19]
  • IBDSim - दूरी मॉडल द्वारा सामान्य अलगाव के तहत जीनोटाइपिक डेटा के सिमुलेशन के लिए एक कंप्यूटर पैकेज।[20]
  • IMa - IMa माइग्रेशन मॉडल के साथ समान अलगाव लागू करता है, लेकिन ऐसा एक नई विधि का उपयोग करके किया जाता है जो मॉडल मापदंडों के संयुक्त पश्च संभाव्यता घनत्व का अनुमान प्रदान करता है। आईएमए नेस्टेड जनसांख्यिकीय मॉडल के लॉग संभावना अनुपात परीक्षण की भी अनुमति देता है। आईएमए हे और नीलसन (2007 पीएनएएस 104:2785-2790) में वर्णित विधि पर आधारित है। आईएमए आईएम से तेज़ और बेहतर है (यानी संयुक्त पश्च घनत्व फ़ंक्शन तक पहुंच प्रदान करने के आधार पर), और इसका उपयोग अधिकांश (लेकिन सभी नहीं) स्थितियों और विकल्पों के लिए किया जा सकता है जिनके लिए आईएम का उपयोग किया जा सकता है।
  • लैमार्क - जनसंख्या वृद्धि, प्रवासन और पुनर्संयोजन की दर के आकलन के लिए सॉफ्टवेयर।
  • माइग्रेन - एक प्रोग्राम जो स्थानिक रूप से संरचित आबादी पर ध्यान देने के साथ आनुवंशिक डेटा के अधिकतम संभावना विश्लेषण (महत्व नमूना एल्गोरिदम का उपयोग करके) के लिए सहसंयोजक एल्गोरिदम लागू करता है .[21]
  • माइग्रेट - एन-कोलेसेंट के तहत माइग्रेशन दरों की अधिकतम संभावना और बायेसियन अनुमान। यह अनुमान मार्कोव श्रृंखला मोंटे कार्लो का उपयोग करके कार्यान्वित किया गया है
  • MaCS - मार्कोवियन कोलेसेंट सिम्युलेटर - मार्कोवियन प्रक्रिया के रूप में गुणसूत्रों में स्थानिक रूप से वंशावली का अनुकरण करता है। मैकवीन और कार्डिन के एसएमसी एल्गोरिदम के समान, और हडसन के एमएस में पाए जाने वाले सभी जनसांख्यिकीय परिदृश्यों का समर्थन करता है।
  • ms & msHOT - तटस्थ मॉडल के तहत नमूने तैयार करने के लिए रिचर्ड हडसन का मूल कार्यक्रम[22] और एक एक्सटेंशन जो पुनर्संयोजन हॉटस्पॉट की अनुमति देता है।[23]
  • msms - एमएस का एक विस्तारित संस्करण जिसमें चयनात्मक स्वीप शामिल है।[24]
  • msprime - एक तेज़ और स्केलेबल एमएस-संगत सिम्युलेटर, जनसांख्यिकीय सिमुलेशन की अनुमति देता है, हजारों या लाखों जीनोम के लिए कॉम्पैक्ट आउटपुट फ़ाइलों का उत्पादन करता है।
  • Recodon और NetRecodon - इंटर/इंट्राकोडोन पुनर्संयोजन, माइग्रेशन, विकास दर और अनुदैर्ध्य नमूने के साथ कोडिंग अनुक्रम अनुकरण करने के लिए सॉफ्टवेयर।[25][26]
  • CoalEvol और SGWE - जनसांख्यिकी, पुनर्संयोजन, प्रवास और अनुदैर्ध्य नमूने के साथ जनसंख्या संरचना के तहत न्यूक्लियोटाइड, कोडिंग और अमीनो एसिड अनुक्रमों का अनुकरण करने के लिए सॉफ्टवेयर।[27]
  • SARG - मैग्नस नॉर्डबोर्ग द्वारा संरचना पैतृक पुनर्संयोजन ग्राफ़
  • simcoal2 - जटिल जनसांख्यिकी और पुनर्संयोजन के साथ सहसंयोजक मॉडल के तहत आनुवंशिक डेटा का अनुकरण करने के लिए सॉफ्टवेयर
  • TreesimJ - फॉरवर्ड सिमुलेशन सॉफ्टवेयर विविध चयनात्मक और जनसांख्यिकीय मॉडल के तहत वंशावली और डेटा सेट के नमूने की अनुमति देता है।

संदर्भ

  1. 1.0 1.1 1.2 Morris, A., Whittaker, J., & Balding, D. (2002). Fine-Scale Mapping of Disease Loci via Shattered Coalescent Modeling of Genealogies. The American Journal of Human Genetics, 70(3), 686–707. doi:10.1086/339271
  2. 2.0 2.1 2.2 Rannala, B. (2001). Finding genes influencing susceptibility to complex diseases in the post-genome era. American journal of pharmacogenomics, 1(3), 203–221.


स्रोत

लेख

  • ^ एरेनास, एम. और पोसाडा, डी. (2014) विषम प्रतिस्थापन मॉडल और जटिल बहुप्रजाति सहसंबद्ध इतिहास के तहत जीनोम-वाइड इवोल्यूशन का अनुकरण। मॉलिक्यूलर बायोलॉजी एंड इवोल्यूशन '31(5)': 1295–1301
  • ^ एरेनास, एम. और पोसाडा, डी. (2007) रिकोडॉन: पुनर्संयोजन, माइग्रेशन और जनसांख्यिकी के साथ कोडिंग डीएनए अनुक्रमों का सहसंयोजक अनुकरण। बीएमसी जैव सूचना विज्ञान '8': 458
  • ^ एरेनास, एम. और पोसाडा, डी. (2010) इंट्राकोडोन पुनर्संयोजन का सहसंयोजक अनुकरण। जेनेटिक्स 184(2): 429-437
  • ^ ब्राउनिंग, एस.आर. (2006) वैरिएबल-लेंथ मार्कोव चेन का उपयोग करके मल्टीलोकस एसोसिएशन मैपिंग। अमेरिकन जर्नल ऑफ ह्यूमन जेनेटिक्स '78':903–913
  • ^ कॉर्नुएट जे.-एम., पुडलो पी., वेस्सिएर जे., डेहने-गार्सिया ए., गौटियर एम., लेब्लोइस आर., मारिन जे.-एम., एस्टूप ए. (2014) DIYABC v2.0: एक सॉफ्टवेयर एकल न्यूक्लियोटाइड बहुरूपता, डीएनए अनुक्रम और माइक्रोसैटेलाइट डेटा का उपयोग करके जनसंख्या इतिहास के बारे में अनुमानित बायेसियन गणना अनुमान लगाना। जैव सूचना विज्ञान 30: 1187–1189
  • ^ डेगनन, जेएच और एलए साल्टर। 2005. सहसंयोजक प्रक्रिया के अंतर्गत जीन वृक्ष वितरण। विकास 59(1): 24-37. पीडीएफ Coaltree.net/ से
  • ^ डोनली, पी., तवेरे, एस. (1995) तटस्थता के तहत सहसंयोजक और वंशावली संरचना। जेनेटिक्स की वार्षिक समीक्षा '29':401-421
  • ^ Drummond A, Suchard MA, Xie D, Rambaut A (2012). "ब्यूटी एंड द बीस्ट 1.7 के साथ बायेसियन फ़ाइलोजेनेटिक्स". Molecular Biology and Evolution. 29 (8): 1969–1973. doi:10.1093/molbev/mss075. PMC 3408070. PMID 22367748.
  • ^ इविंग, जी. और हर्मिसन जे. (2010), एमएसएमएस: एक एकल स्थान पर पुनर्संयोजन, जनसांख्यिकीय संरचना और चयन सहित एक सहसंयोजक सिमुलेशन कार्यक्रम, org/content/26/16/2064.पूर्ण जैव सूचना विज्ञान '26':15
  • ^ हेलेंथल, जी., स्टीफेंस एम. (2006) एमएसएचओटी: क्रॉसओवर और जीन रूपांतरण हॉटस्पॉट को शामिल करने के लिए हडसन के एमएस सिम्युलेटर को संशोधित करना सीजीआई/सामग्री/सार/बीटीएल622वी1 जैव सूचना विज्ञान 'एओपी'
  • ^ Hudson, Richard R. (1983a). "प्रोटीन अनुक्रम डेटा के साथ कॉन्स्टेंट-रेट न्यूट्रल एलील मॉडल का परीक्षण". Evolution. 37 (1): 203–17. doi:10.2307/2408186. ISSN 1558-5646. JSTOR 2408186. PMID 28568026.
  • ^ हडसन आरआर (1983बी) इंट्राजेनिक पुनर्संयोजन के साथ एक तटस्थ एलील मॉडल के गुण। सैद्धांतिक जनसंख्या जीवविज्ञान '23':183-201।
  • ^ हडसन आरआर (1991) जीन वंशावली और सहसंयोजक प्रक्रिया। विकासवादी जीवविज्ञान में ऑक्सफोर्ड सर्वेक्षण '7': 1-44
  • ^ हडसन आरआर (2002) राइट-फिशर न्यूट्रल मॉडल के तहत नमूने तैयार करना। जैव सूचना विज्ञान '18':337–338
  • ^ केंडल डब्ल्यूएस (2003) मानव एकल न्यूक्लियोटाइड बहुरूपता के वितरण के लिए एक घातीय फैलाव मॉडल। मोल बायोल इवोल '20': 579-590
  • हेन, जे., शिएरुप, एम., विउफ सी. (2004) जीन वंशावली, विविधता और विकास: कोलेसेंट थ्योरी में एक प्राइमर ऑक्सफोर्ड यूनिवर्सिटी प्रेस ISBN 978-0-19-852996-5
  • ^ कपलान, एन.एल., डार्डन, टी., हडसन, आर.आर. (1988) चयन के साथ मॉडलों में सहसंबद्ध प्रक्रिया। जेनेटिक्स '120':819-829
  • ^ Kingman, J. F. C. (1982). "बड़ी आबादी की वंशावली पर". Journal of Applied Probability. 19: 27–43. CiteSeerX 10.1.1.552.1429. doi:10.2307/3213548. ISSN 0021-9002. JSTOR 3213548. S2CID 125055288.
  • ^ किंगमैन, जे.एफ.सी. (2000) कोलेसेंट की उत्पत्ति 1974-1982। जेनेटिक्स '156':1461–1463
  • ^ लेब्लोइस आर., एस्टुप ए. और रूसेट एफ. (2009) आईबीडीसिम: दूरी के आधार पर अलगाव के तहत जीनोटाइपिक डेटा का अनुकरण करने के लिए एक कंप्यूटर प्रोग्राम .free.fr/Papiers/LebloisEtAl.2009MolEcolRess_IBDSim.pdf आणविक पारिस्थितिकी संसाधन '9':107-109
  • ^ लिआंग एल., ज़ोलनर एस., एबेकासिस जी.आर. (2007) जीनोम: एक तीव्र सहसंयोजक-आधारित संपूर्ण जीनोम सिम्युलेटर। जैव सूचना विज्ञान '23': 1565–1567
  • ^ मैलुंड, टी., शिएरुप, एम.एच., पेडर्सन, सी.एन.एस., मेक्लेंबोर्ग, पी.जे.एम., मैडसेन, जे.एन., शॉसर, एल. (2005) कोएसिम: कोलेसेंट मॉडल्स के तहत जेनेटिक डेटा सिमुलेटिंग के लिए एक लचीला वातावरण com/1471-2105/6/252/सार बीएमसी जैव सूचना विज्ञान '6':252
  • ^ मोहले, एम., सागिटोव, एस. (2001) अगुणित विनिमेय जनसंख्या मॉडल के लिए सहसंयोजक प्रक्रियाओं का वर्गीकरण द एनल्स ऑफ प्रोबेबिलिटी '29':1547-1562
  • ^ मॉरिस, ए.पी., व्हिटेकर, जे.सी., बाल्डिंग, डी.जे. (2002) वंशावली के बिखरे हुए सहसंयोजक मॉडलिंग के माध्यम से रोग लोकी की बारीक पैमाने पर मैपिंग अमेरिकन जर्नल ऑफ ह्यूमन जेनेटिक्स '70':686-707
  • ^ क्लाउडिया न्यूहौसर|न्यूहौसर, सी., क्रोन, एस.एम. (1997) चयन के साथ मॉडल में नमूनों की वंशावली जेनेटिक्स '145' 519-534
  • ^ पिटमैन, जे. (1999) कोलेसेंट्स विद मल्टीपल कोलिजन्स द एनल्स ऑफ प्रोबेबिलिटी '27':1870-1902
  • ^ हार्डिंग, रोज़ालिंड, एम. 1998. न्यू फ़ाइलोजेनीज़: कोलेसेंट पर एक परिचयात्मक नज़र। पीपी. 15-22, हार्वे में, पी.एच., ब्राउन, ए.जे.एल., स्मिथ, जे.एम., नी, एस. नई फ़ाइलोजेनीज़ के लिए नए उपयोग। ऑक्सफोर्ड यूनिवरसिटि प्रेस (ISBN 0198549849)
  • ^ रोसेनबर्ग, एन.ए., नॉर्डबोर्ग, एम. (2002) वंशावली वृक्ष, सहसंयोजक सिद्धांत और आनुवंशिक बहुरूपता का विश्लेषण। नेचर रिव्यूज़ जेनेटिक्स '3':380-390
  • ^ सैगिटोव, एस. (1999) पैतृक रेखाओं के अतुल्यकालिक विलय के साथ सामान्य सहसंबद्ध जर्नल ऑफ एप्लाइड प्रोबेबिलिटी '36':1116-1125
  • ^ श्वेन्सबर्ग, जे. (2000) एक साथ कई टकरावों के साथ सहसंयोजक इलेक्ट्रॉनिक जर्नल ऑफ प्रोबेबिलिटी '5':1-50
  • ^ स्लैटकिन, एम. (2001) परिवर्तनीय आकार की आबादी में चयनित एलील्स की वंशावली का अनुकरण जेनेटिक रिसर्च '145':519-534
  • ^ ताजिमा, एफ. (1983) परिमित आबादी में डीएनए अनुक्रमों का विकासवादी संबंध। जेनेटिक्स '105':437-460
  • ^ तवारे एस, बाल्डिंग डीजे, ग्रिफिथ्स आरसी और डोनेली पी. 1997। डीएनए अनुक्रम डेटा से सहसंयोजक समय का अनुमान लगाना। जेनेटिक्स '145': 505-518।
  • ^ अंतर्राष्ट्रीय एसएनपी मानचित्र कार्य समूह। 2001. 1.42 मिलियन एकल न्यूक्लियोटाइड बहुरूपताओं वाले मानव जीनोम भिन्नता का एक मानचित्र। प्रकृति '409': 928-933।
  • ^ ज़ोलनर एस. और जोनाथन के. प्रिचर्ड|प्रिचर्ड जे.के. (2005) कोलेसेंट-आधारित एसोसिएशन मैपिंग और कॉम्प्लेक्स ट्रैट लोकी की फाइन मैपिंग जेनेटिक्स '169 ':1071-1092
  • ^ रूसेट एफ. और लेब्लोइस आर. (2007) एक रेखीय आवास में आनुवंशिक संरचना की संभावना और अनुमानित संभावना विश्लेषण: मॉडल गलत विशिष्टता के लिए प्रदर्शन और मजबूती /raphael.leblois.free.fr/Papiers/RoussetLeblois2007MBE.pdf आण्विक जीवविज्ञान और विकास '24':2730-2745

किताबें

  • हेन, जे; शिएरुप, एम. एच., और विउफ, सी. जीन वंशावली, विविधता और विकास - कोलेसेंट थ्योरी में एक प्राइमर। ऑक्सफोर्ड यूनिवरसिटि प्रेस, 2005। ISBN 0-19-852996-1.
  • नॉर्डबोर्ग, एम. (2001) इंट्रोडक्शन टू कोलेसेंट थ्योरी
  • बाल्डिंग, डी., बिशप, एम., कैनिंग्स, सी., संपादकों में अध्याय 7, सांख्यिकीय आनुवंशिकी की पुस्तिका। विले ISBN 978-0-471-86094-5
  • वेकले जे. (2006) एन इंट्रोडक्शन टू कोलेसेंट थ्योरी रॉबर्ट्स एंड कंपनी ISBN 0-9747077-5-9 नमूना अध्यायों के साथ वेबसाइट
  • ^ चावल एसएच. (2004)। विकासवादी सिद्धांत: गणितीय और वैचारिक आधार। सिनाउर एसोसिएट्स: सुंदरलैंड, एमए। विशेष देखें. चौ. विस्तृत व्युत्पत्तियों के लिए 3.
  • बेरेस्टीकी एन. कोलेसेंट थ्योरी में हालिया प्रगति 2009 ENSAIOS Matematicos vol.16
  • बर्टोइन जे. रैंडम विखंडन और जमावट प्रक्रियाएं।, 2006। उन्नत गणित में कैम्ब्रिज अध्ययन, 102। कैम्ब्रिज यूनिवर्सिटी प्रेस, कैम्ब्रिज, 2006। ISBN 978-0-521-86728-3;
  • पिटमैन जे. कॉम्बिनेटोरियल स्टोकेस्टिक प्रोसेस स्प्रिंगर (2003)

बाहरी संबंध