अनंत पर अतिसमतल

From Vigyanwiki
Revision as of 16:49, 12 October 2023 by Abhishekkshukla (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

ज्यामिति में, प्रक्षेपी समिष्ट P के किसी भी अतिसमतल H को 'अनंत पर अतिसमतल' के रूप में जाना जाता है। समुच्चय पूरक PH को सजातीय समिष्ट कहा जाता है। उदाहरण के लिए, यदि (x1, ..., xn, xn+1) n-डायमेंशनल प्रक्षेपी समिष्ट के लिए सजातीय निर्देशांक हैं, तो समीकरण xn+1 = 0 निर्देशांक (x1, ..., xn) के साथ n-डायमेंशनल सजातीय समिष्ट के लिए अनंत पर अतिसमतल को परिभाषित I करता है H को 'आदर्श अतिसमतल' भी कहा जाता है।

इसी प्रकार सजातीय समिष्ट A से प्रारम्भ करते हुए, समानांतर (ज्यामिति) रेखाओं के प्रत्येक वर्ग को अनंत पर बिंदु से जोड़ा जा सकता है। समानता के सभी वर्गों पर संघ (समुच्चय सिद्धांत) अनंत पर अतिसमतल के बिंदुओं का गठन करता है। इन अतिसमतल (जिसे 'आदर्श बिंदु' कहा जाता है) के बिंदुओं को A से जोड़ने पर यह वास्तविक प्रक्षेपी समिष्ट RPn जैसे n-डायमेंशनल प्रक्षेपी समिष्ट में परिवर्तित हो जाता है।

इन आदर्श बिंदुओं को जोड़कर, संपूर्ण संबंधित समिष्ट A को प्रक्षेपी समिष्ट P तक पूर्ण किया जाता है, जिसे A का 'प्रक्षेपी समापन' कहा जा सकता है। S में समाहित रेखाओं की दिशा के अनुरूप सभी आदर्श बिंदुओं को S में जोड़कर A के प्रत्येक सजातीय उपस्थान S को P के प्रक्षेपी उपस्थान में पूर्ण किया जाता है। परिणामी प्रक्षेपी उपस्थानों को प्रायः प्रक्षेपी समिष्ट P के परिशोधित उपस्थान कहा जाता है, जैसा कि अनंत या आदर्श उपस्थानों के विपरीत होता है, जो अनंत पर अतिसमतल के उपस्थान हैं (चूँकि, वे प्रक्षेपी समिष्ट हैं, सजातीय समिष्ट नहीं हैं)।

प्रक्षेपी समिष्ट में, आयाम k का प्रत्येक प्रक्षेपी उपस्थान आदर्श अतिसमतल को अनंत पर प्रतिच्छेदित करता है, जिसका आयाम k − 1 है|

गैर-समानांतर (ज्यामिति) सजातीय अतिसमतल की जोड़ी n − 2 आयाम के सजातीय उपस्थान पर प्रतिच्छेद करती है, किन्तु सजातीय अतिसमतल की समानांतर जोड़ी आदर्श अतिसमतल के प्रक्षेपी उपस्थान पर प्रतिच्छेद करती है (आदर्श अतिसमतल पर प्रतिच्छेदन स्थित है)। इस प्रकार समानांतर अतिसमतल, जो सजातीय समिष्ट में नहीं होते हैं, अनंत पर अतिसमतल के अतिरिक्त होने के कारण प्रक्षेपी पूर्णता में प्रतिच्छेद करते हैं।

यह भी देखें

संदर्भ

  • Albrecht Beutelspacher & Ute Rosenbaum (1998) Projective Geometry: From Foundations to Applications, p 27, Cambridge University Press ISBN 0-521-48277-1 .