हाइड्रोसायनेशन

From Vigyanwiki
Revision as of 13:44, 24 November 2022 by alpha>Ayush Mishra

कार्बनिक रसायन में, हाइड्रोसायनेशन एल्कीनों को नाइट्राइल में रूपांतरित करने की एक प्रक्रिया है। इस अभिक्रिया में हाइड्रोजन साइनाइड सम्मिलित होता है और इसके लिए एक उत्प्रेरक की आवश्यकता होती है। नायलॉन के पूर्ववर्तियों के उत्पादन के लिए यह रूपांतरण औद्योगिक पैमाने पर संचालित किया जाता है।

निष्क्रिय एल्कीनों का हाइड्रोसायनेशन

औद्योगिक रूप से, हाइड्रोसायनेशन सामान्यतः फास्फाइट (P(OR)3) लिगैंड के निकेल उपसहसंयोजी संकुलों द्वारा उत्प्रेरित एल्कीनों पर किया जाता है। एक सामान्य अभिक्रिया प्रदर्शित की गई है:[1]

स्टोइकोमेट्री और क्रियाविधि

इस अभिक्रिया में अधःस्तर पर H+ और साइनाइड (CN) का योग सम्मिलित होता है। सामान्यतः अधःस्तर एक एल्कीन और उत्पाद नाइट्राइल होता है।

हाइड्रिडो साइनाइड संकुल प्रदान करने के लिए कम-संयोजी धातु संकुलों में HCN के ऑक्सीकृत योग के माध्यम से अभिक्रिया आगे बढ़ती है। एल्कीन के अनुवर्ती बंधों से मध्यवर्ती M(H)(CN)Ln(एल्कीन) प्राप्त होता है, जो तब एल्किल धातु साइनाइड प्रदान करने के लिए के लिए प्रवासी समष्टि से गुजरता है। यह चक्र नाइट्राइल के अपचायक निष्कासन द्वारा पूर्ण होता है।[1]

ट्राइफेनिलबोरॉन (B(C6H5)3) जैसे लुईस अम्ल, दरों में वृद्धि करके नाइट्राइल उत्पाद के अपचायक निष्कासन को प्रेरित करते हैं।

निकेल-आधारित प्रणालियों की स्थिति में, उत्प्रेरक निष्क्रियकरण में डाइसायनोनिकेल(II) वर्गों का निर्माण सम्मिलित है, जो एल्कीनों के प्रति अनअभिक्रियाशील होते हैं। डाइसायनाइड दो अनुमार्गों (एल = फास्फाइट) के माध्यम से उत्पन्न होता है:[1]

असममित हाइड्रोसायनेशन

अधिकांश एल्कीन प्रोचिरल होते हैं, इस संदर्भ में इसका अर्थ है कि इनका हाइड्रोसायनेशन चिरल नाइट्राइल उत्पन्न करता है। परंपरागत हाइड्रोसायनेशन उत्प्रेरक, जैसे Ni(P(OR)3)4, रेसिमिक मिश्रण के गठन को उत्प्रेरित करता है। हालांकि जब सहायक लिगैंड चिरल होते हैं, तो हाइड्रोसायनेशन अत्यधिक ऊर्जावान हो सकता है। असममित हाइड्रोसायनेशन के लिए चिलेटिंग एरिल डाइफॉस्फाइट संकुल प्रचलित चिराल लिगैंड हैं।[1][2][3]

अनुप्रयोग

ब्यूटा-1,3-डाइन (CH2=CH−CH=CH2) से एडिपोनाइट्राइल (NC−(CH2)4−CN) संश्लेषण का निकेल-उत्प्रेरित संश्लेषण इसका सबसे महत्वपूर्ण औद्योगिक अनुप्रयोग है। एडिपोनाइट्राइल हेक्सामेथिलीनडाइएमीन (H2N−(CH2)6−NH2) का पूर्ववर्ती है, जिसका उपयोग कुछ विशेष प्रकार के नायलॉन के उत्पादन के लिए किया जाता है। एडिपोनाइट्राइल प्रदान करने के लिए ड्यूपॉन्ट एडीएन प्रक्रिया नीचे प्रदर्शित की गई है:

ब्यूटाडीन हाइड्रोसायनेशन
इस प्रक्रिया में तीन चरण होते हैं: 2-मेथिल-ब्यूटेन-3-नाइट्राइल (2एम3बीएम) और पेंटीन-3-नाइट्राइल (3पीएन) के मिश्रण के लिए ब्यूटाडीन का हाइड्रोसायनेशन, 2एम3बीएम (वांछित नहीं) से 3पीएन तक एक समावयवन चरण और दूसरा एडिपोनाइट्राइल में हाइड्रोसाइनेशन (लुईस अम्ल उप-उत्प्रेरक जैसे एल्यूमीनियम ट्राइक्लोराइड या ट्राइफेनिलबोरोन द्वारा सहायक)।[4]

असममित हाइड्रोसायनेशन

एल्किल नाइट्राइल (RCN) की अस्थिरता के कारण हाइड्रोसायनेशन महत्वपूर्ण होता है, जो एमाइड, एमाइन, कार्बोक्सिलिक अम्ल और एस्टर के संश्लेषण के लिए महत्वपूर्ण मध्यवर्ती होते हैं।

एक सूजन-रोधी औषधि नेप्रोक्सेन, एक फ़ॉस्फ़िनाइट (OPR2) लिगैंड L का उपयोग करने वाले विनाइलनैफ्थेलीन के एक असममित संश्लेषण के माध्यम से तैयार की जाती है। इस अभिक्रिया की एनएंटियोसेलेक्टिविटी महत्वपूर्ण होती है क्योंकि केवल S प्रतिबिम्ब रुपी समावयव औषधीय रूप से वांछनीय होता है, जबकि R प्रतिबिम्ब रुपी समावयव हानिकारक स्वास्थ्य प्रभाव उत्पन्न करता है। यह अभिक्रिया >90% स्टीरियोसेलेक्टिविटी के साथ S प्रतिबिम्ब रुपी समावयव का उत्पादन कर सकती है। कच्चे उत्पाद के पुन: क्रिस्टलीकरण पर, वैकल्पिक रूप से शुद्ध नाइट्राइल प्राप्त किया जा सकता है।

इतिहास

आर्थर और प्रैट द्वारा पहली बार वर्ष 1954 में हाइड्रोसायनेशन की सूचना दी गई थी, जब उन्होंने रैखिक एल्कीनों के हाइड्रोसायनेशन को समांगी रूप से उत्प्रेरित किया था।[5] ब्यूटाडाइन से एडिपोनाइट्राइल के उत्प्रेरकीय हाइड्रोसायनेशन की औद्योगिक प्रक्रिया का आविष्कार विलियम सी. ड्रिंकर्ड ने किया था।

ट्रांसहाइड्रोसायनेशन

ट्रांसहाइड्रोसायनेशन में, HCN के समतुल्य को सायनोहाइड्रिन, जैसे एसीटोन सायनोहाइड्रिन, से दूसरे HCN ग्राही में स्थानांतरित किया जाता है। स्थानांतरण, क्षार द्वारा प्रारंभ की गई एक साम्यावस्था प्रक्रिया होती है। इस अभिक्रिया को प्रपाशन अभिक्रियाओं या एल्डिहाइड जैसे बेहतर HCN ग्राहियों के उपयोग द्वारा संचालित किया जा सकता है।[6]

असंतृप्त कार्बोनिल यौगिकों का हाइड्रोसायनेशन

धातु उत्प्रेरक की अनुपस्थिति में α, β-असंतृप्त कार्बोनिल यौगिक हाइड्रोसायनेशन की प्रक्रिया से गुजरते हैं। एक अभिव्यक्ति माइकल अभिक्रिया की एक विशेष स्थिति है, जो β-सायनोकीटोनों के लिए अग्रणी है। एक और अभिव्यक्ति विनाइल सायनोहाइड्रिन की ओर अग्रसर होती है। इसमें β-सायनो-सायनोहाइड्रिन भी देखे जाते हैं। अभिक्रिया की स्थिति इनमें से किसी भी उत्पाद तक पहुंच की अनुमति देती है।[7]

CNgen.png

सामान्यतः अम्लीय स्थितियाँ 1,2-योगोत्पादों का, जबकि क्षारीय स्थितियाँ 1,4-योगोत्पादों का समर्थन करती हैं। उदाहरण के लिए, क्षार धातु सायनायडों के योग, विशेष रूप से 1,4-योग की ओर अग्रसर होते हैं।[8] क्षार धातु सायनायडों और साइनोएल्यूमिनेटों के विपरीत, ट्राइमेथिलसिलिल साइनाइड (टीएमएससीएन) जैसे लुईस अम्लीय साइनाइड 1,2-योग का समर्थन करते हैं। एसिटिलेनिक अधःस्तर अभिक्रिया से होकर गुजरते हैं; हालाँकि इस अभिक्रिया का परिक्षेत्र सीमित है और उत्पादन प्रायः कम होता है।[9]

CNAddScope2.png

इमीनों के 1,4-योगों को कुछ स्थितियों में देखा गया है, हालांकि इमीन प्रायः क्षार परिवर्ती होते हैं।[10]

CNAddScope3.png

एस्टर,[11] नाइट्राइल[12] और अन्य कार्बोनिल व्युत्पन्न भी संयुग्मी हाइड्रोसायनेशन से होकर गुजरते हैं। जब क्षार धातु सायनायडों का उपयोग किया जाता है, तो अभिक्रिया माध्यम का कम से कम आंशिक रूप से उदासीनीकरण सामान्यतः आवश्यक होता है। उदासीनीकरण प्रक्रिया को एक अम्लीय समूह के माध्यम से उप-अवस्था (आंतरिक उदासीनीकरण) पर[13] या एक बाह्य अम्ल (बाह्य उदासीनीकरण) के योग के माध्यम से ही पूर्ण किया जा सकता है। लैपवर्थ द्वारा प्रारंभ की गई प्रक्रिया में एसिटिक अम्ल का उपयोग सामान्यतः इस उद्देश्य के लिए किया जाता है।[14]

CNAddNeut.png

स्टेरॉइडल डी वलय को तैयार करने के लिए संयुग्मी हाइड्रोसायनेशन का उपयोग किया गया था।[15] डायस्टीरियोसेलेक्टिविटी सामान्यतः इन योगात्मक अभिक्रियाओं में उच्च होती है, और परिणामी β-सायनो कार्बोनिल यौगिकों को कई स्टेरॉइडल उत्पादों में परिवर्तित किया जा सकता है।

इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • कार्बनिक रसायन शास्त्र
  • ऑक्सीडेटिव अतिरिक्त
  • प्रवासी प्रविष्टि
  • ट्राइफेनिलबोरोन
  • एनेंटियोसेलेक्टिव
  • कीलेट
  • सूजनरोधी
  • सजातीय उत्प्रेरण
  • अलकाली धातु

संदर्भ

  1. 1.0 1.1 1.2 1.3 Piet W.N.M. van Leeuwen "Homogeneous Catalysis: Understanding the Art", 2004, Wiley-VCH, Weinheim. ISBN 1-4020-2000-7
  2. RajanBabu, T. V.; Casalnuovo, A. L. (1994). "असममित कटैलिसीस में इलेक्ट्रॉनिक प्रभाव: Enantioselective कार्बन-कार्बन बंधन बनाने की प्रक्रिया". Pure Appl. Chem. 66 (7): 1535–42. doi:10.1351/pac199466071535.
  3. Goertz, Wolfgang; Kamer, Paul C. J.; van Leeuwen, Piet W. N. M.; Vogt, Dieter (1997). "एल्क-एल-एन्स और ω-असंतृप्त फैटी एसिड एस्टर के निकल-उत्प्रेरित हाइड्रोसायनेशन में डीफोस्फीन लिगैंड्स का अनुप्रयोग". Chem. Commun. (16): 1521–1522. doi:10.1039/a702811c.
  4. Bini, L.; Muller, C.; Wilting, J.; von Chrzanowski, L.; Spek, A. L.; Vogt, D. (2007). "3-पेंटेनेनिट्राइल की ओर ब्यूटाडीन का अत्यधिक चयनात्मक हाइड्रोसायनेशन". J. Am. Chem. Soc. 129 (42): 12622–3. doi:10.1021/ja074922e. hdl:1874/26892. PMID 17902667.
  5. Arthur, P.; England, D. C.; Pratt, B. C.; Whitman, G. M. (1954). "असंतृप्त यौगिकों में हाइड्रोजन साइनाइड का योग". Journal of the American Chemical Society. 76 (21): 5364–5367. doi:10.1021/ja01650a034. ISSN 0002-7863.
  6. Serkos A. Haroutounian (2001). "Acetone Cyanohydrin". कार्बनिक संश्लेषण के लिए अभिकर्मकों का विश्वकोश. eEROS. doi:10.1002/047084289X.ra014. ISBN 978-0471936237.
  7. Nagata, Wataru; Yoshioka, Mitsuru (1977). "Hydrocyanation of Conjugated Carbonyl Compounds". कार्बनिक प्रतिक्रियाएं. pp. 255–476. doi:10.1002/0471264180.or025.03. ISBN 0471264180.
  8. Mowry, David T. (1948). "नाइट्राइल की तैयारी". Chemical Reviews. 42 (2): 189–283. doi:10.1021/cr60132a001. PMID 18914000.
  9. Kurtz, P. Ann. Chem. 1951, 572, 23.
  10. Nagata, W. ; Yoshioka, M. ; Okumura, T. ; Murakami, M. J. Chem. Soc., C, 1970, 2355.
  11. Allen, H. ; Johnson, B. Org. Synth. 1963, Coll. Vol. IV, 804.
  12. Kurtz, P. Ann. Chem. 1951, 572, 23.
  13. Crabbé, P.; Pérez, M.; Vera, G. Can. J. Chem. 1963, 41, 156.
  14. Lapworth, A. ; Wechsler, E. J. Chem. Soc. 1910, 97, 38.
  15. Nagata, W. ; Terasawa, T. ; Hirai, S. ; Takeda, K. Tetrahedron Lett., 1960, 17, 27.