अवस्था प्रेक्षक

From Vigyanwiki
Revision as of 07:04, 17 October 2023 by Indicwiki (talk | contribs) (8 revisions imported from alpha:अवस्था_प्रेक्षक)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


नियंत्रण सिद्धांत में,अवस्था प्रेक्षक या अवस्था अनुमानक ऐसी प्रणाली है जो वास्तविक प्रणाली के इनपुट/आउटपुट और आउटपुट के माप से किसी दिए गए वास्तविक प्रणाली के अवस्था स्थान (नियंत्रण) का अनुमान प्रदान करती है। यह समान रूप से कंप्यूटर द्वारा क्रियान्वित किया जाता है, और विभिन्न व्यावहारिक अनुप्रयोगों का आधार प्रदान करता है।

विभिन्न नियंत्रण सिद्धांत समस्याओं को हल करने के लिए प्रणाली स्थिति को जानना आवश्यक है; उदाहरण के लिए, पूर्ण अवस्था फीडबैक का उपयोग करके किसी प्रणाली को स्थिर करना। अधिकांश व्यावहारिक स्थितियों में, प्रणाली की भौतिक स्थिति को प्रत्यक्ष अवलोकन द्वारा निर्धारित नहीं किया जा सकता है। इसके अतिरिक्त , प्रणाली आउटपुट के माध्यम से आंतरिक स्थिति के अप्रत्यक्ष प्रभाव देखे जाते हैं। जिसमे सरल उदाहरण सुरंग में वाहनों का है: जिस दर और वेग से वाहन सुरंग में प्रवेश करते हैं और निकलते हैं उसे सीधे देखा जा सकता है, किन्तु सुरंग के अंदर की स्पष्ट स्थिति का केवल अनुमान लगाया जा सकता है। यदि कोई प्रणाली अवलोकनीयता है, तो अवस्था प्रेक्षक का उपयोग करके उसके आउटपुट माप से प्रणाली स्थिति को पूरी तरह से पुनर्निर्माण करना संभव है।

विशिष्ट प्रेक्षक मॉडल

लुएनबर्गर प्रेक्षक का ब्लॉक आरेख है। पर्यवेक्षक लाभ एल का इनपुट है।

रैखिक, विलंबित, स्लाइडिंग मोड, उच्च लाभ, ताऊ, समरूपता-आधारित, विस्तारित और घन प्रेक्षक रैखिक और गैर-रेखीय प्रणालियों के अवस्था आकलन के लिए उपयोग की जाने वाली विभिन्न प्रेक्षक संरचनाओं में से हैं। जो रैखिक प्रेक्षक संरचना का वर्णन निम्नलिखित अनुभागों में किया गया है।

असतत-समय का स्थिति

एक रैखिक, समय-अपरिवर्तनीय असतत-समय प्रणाली की स्थिति को संतुष्ट माना जाता है

जहां, समय पर, पौधे की अवस्था है क्या इसका इनपुट है; और इसका आउटपुट है. ये समीकरण समान्य रूप से कहते हैं कि संयंत्र के वर्तमान आउटपुट और इसकी भविष्य की स्थिति दोनों पूरी तरह से इसकी वर्तमान स्थिति और वर्तमान इनपुट द्वारा निर्धारित होते हैं। (यद्यपि ये समीकरण अलग-अलग गणित समय चरणों के संदर्भ में व्यक्त किए जाते हैं, निरंतर कार्य प्रणालियों के लिए बहुत समान समीकरण प्रयुक्त होते हैं)। यदि यह प्रणाली अवलोकनीयता है तो संयंत्र का उत्पादन, , का उपयोग अवस्था प्रेक्षक की स्थिति को नियंत्रित करने के लिए किया जा सकता है।

भौतिक प्रणाली का प्रेक्षक मॉडल समान रूप से उपरोक्त समीकरणों से प्राप्त होता है। यह सुनिश्चित करने के लिए अतिरिक्त नियम सम्मिलित की जा सकती हैं कि, संयंत्र के इनपुट और आउटपुट के क्रमिक मापा मूल्य प्राप्त करने पर, इस मॉडल की स्थिति संयंत्र की स्थिति में परिवर्तित हो जाती है। जो कि विशेष रूप से, प्रेक्षक के आउटपुट को संयंत्र के आउटपुट से घटाया जा सकता है और फिर आव्यूह द्वारा गुणा किया जा सकता है; फिर इसे नीचे दिए गए समीकरणों द्वारा परिभाषिततथाकथित डेविड लुएनबर्गर प्रेक्षक बनाने के लिए प्रेक्षक की स्थिति के समीकरणों में जोड़ा जाता है। ध्यान दें कि अवस्था प्रेक्षक के वेरिएबल समान्य रूप से टोपी द्वारा दर्शाए जाते हैं: जो और उन्हें भौतिक प्रणाली द्वारा संतुष्ट समीकरणों के वेरिएबल्स से अलग करना होता है।

प्रेक्षक को स्पर्शोन्मुख रूप से स्थिर कहा जाता है यदि प्रेक्षक त्रुटि , होने पर शून्य में परिवर्तित हो जाती है। लुएनबर्गर पर्यवेक्षक के लिए, पर्यवेक्षक त्रुटि को संतुष्ट करती है। इस असतत-समय प्रणाली के लिए लुएनबर्गर पर्यवेक्षक इसलिए असम्बद्ध रूप से स्थिर होता है जब आव्यूह में ईकाई वृत्त के अंदर सभी आइगेनवैल्यू होते हैं।

नियंत्रण उद्देश्यों के लिए पर्यवेक्षक प्रणाली का आउटपुट लाभ आव्यूह के माध्यम से पर्यवेक्षक और संयंत्र दोनों के इनपुट में वापस फीड किया जाता है।

प्रेक्षक समीकरण तब बन जाते हैं:

या, अधिक सरलता से,


पृथक्करण सिद्धांत के कारण हम जानते हैं कि हम प्रणाली की समग्र स्थिरता को हानि पहुंचाए बिना और को स्वतंत्र रूप से चुन सकते हैं। एक नियम के रूप में, पर्यवेक्षक के ध्रुवों को समान्य रूप से प्रणाली के ध्रुवों की तुलना में 10 गुना तेजी से अभिसरण करने के लिए चुना जाता है।

सतत-समय स्थिति

पिछला उदाहरण एक अलग-समय एलटीआई प्रणाली में कार्यान्वित पर्यवेक्षक के लिए था। चूँकि, निरंतर-समय के स्थिति के लिए प्रक्रिया समान है; पर्यवेक्षक लाभ को निरंतर समय त्रुटि गतिशीलता को स्पर्शोन्मुख रूप से शून्य में परिवर्तित करने के लिए चुना जाता है (अथार्त, जब एक हर्विट्ज़ आव्यूह है)।

एक सतत-समय रैखिक प्रणाली के लिए

जहाँ , प्रेक्षक ऊपर वर्णित असतत-समय के स्थिति के समान दिखता है:

.

प्रेक्षक त्रुटि समीकरण को संतुष्ट करता है

.

जब जोड़ी अवलोकन योग्य होती है, अथार्त अवलोकन की स्थिति बनी रहती है, तो आव्यूह के आइगेनवैल्यू को पर्यवेक्षक लाभ की उचित पसंद से इच्छित रूप से चुना जा सकता है। विशेष रूप से, इसे हर्विट्ज़ बनाया जा सकता है, इसलिए होने पर पर्यवेक्षक त्रुटि {

पीकिंग और अन्य प्रेक्षक विधियां

जब प्रेक्षक को लाभ होता है उच्च है, जो कि रैखिक लुएनबर्गर प्रेक्षक प्रणाली स्थितियों में बहुत तेज़ी से परिवर्तित होता है। चूँकि , उच्च प्रेक्षक लाभचरम घटना की ओर ले जाता है जिसमें प्रारंभिक अनुमानक त्रुटि निषेधात्मक रूप से बड़ी हो सकती है (अथार्त , अव्यावहारिक या उपयोग करने के लिए असुरक्षित)।[1] परिणामस्वरूप, गैर-रैखिक उच्च-लाभ प्रेक्षक विधियां उपलब्ध हैं जो चरम घटना के बिना जल्दी से अभिसरण करती हैं। उदाहरण के लिए, स्लाइडिंग मोड नियंत्रण का उपयोगपर्यवेक्षक को डिजाइन करने के लिए किया जा सकता है जो माप त्रुटि की उपस्थिति में भी सीमित समय मेंअनुमानित अवस्था की त्रुटि को शून्य पर लाता है; अन्य स्थिति में त्रुटि है जो शिखर के कम होने के बाद लुएनबर्गर प्रेक्षक में त्रुटि के समान व्यवहार करती है। जिसका स्लाइडिंग मोड पर्यवेक्षकों में आकर्षक ध्वनि लचीलापन गुण भी होते हैं जो कलमन फ़िल्टर के समान होते हैं।[2][3]

एक अन्य दृष्टिकोण बहु प्रेक्षक को प्रयुक्त करना है, जो ट्रांजिएंट्स में अधिक सुधार करता है और प्रेक्षक ओवरशूट को कम करता है। बहु-प्रेक्षक को हर उस प्रणाली के लिए अनुकूलित किया जा सकता है जहां उच्च-लाभ प्रेक्षक प्रयुक्त होता है।[4]


अरेखीय प्रणालियों के लिए अवस्था पर्यवेक्षक

उच्च लाभ, स्लाइडिंग मोड और विस्तारित प्रेक्षक नॉनलाइनियर प्रणाली के लिए सबसे समान्य प्रेक्षक हैं।

नॉनलीनियर प्रणाली के लिए स्लाइडिंग मोड पर्यवेक्षकों के अनुप्रयोग को स्पष्ट करने के लिए, पहले नो-इनपुट नॉन-लीनियर प्रणाली पर विचार करें:

जहां . यह भी मान लें कि एक मापने योग्य आउटपुट दिया गया है

किसी प्रेक्षक को डिज़ाइन करने के लिए विभिन्न गैर-अनुमानित दृष्टिकोण हैं। नीचे दिए गए दो प्रेक्षक उस स्थिति पर भी प्रयुक्त होते हैं जब प्रणाली में कोई इनपुट होता है। वह है,


रेखीय त्रुटि गतिशीलता

क्रेनर और इसिडोरी[5] और क्रेनर और रेस्पोंडेक[6] के एक सुझाव को ऐसी स्थिति में प्रयुक्त किया जा सकता है जब एक रैखिक परिवर्तन उपस्थित होता है (अथार्त, एक भिन्नता, जैसा कि फीडबैक रैखिककरण में उपयोग किया जाता है) जैसे नए वेरिएबल्स में प्रणाली समीकरण पढ़ते हैं

लुएनबर्गर प्रेक्षक को तब डिज़ाइन किया गया है

.

रूपांतरित वेरिएबल के लिए प्रेक्षक त्रुटि मौलिक रैखिक स्थिति के समान समीकरण को संतुष्ट करता है।

.

जैसा कि गॉथियर, हैमौरी, और ओथमान[7] और हैमौरी और किन्नार्ट द्वारा दिखाया गया है,[8] यदि परिवर्तन उपस्थित है जो कि जैसे कि प्रणाली को स्वरूप में परिवर्तित किया जा सकता है

तब प्रेक्षक को इस प्रकार डिज़ाइन किया गया है

,

जहाँ समय-परिवर्तनशील प्रेक्षक लाभ है।

सिस्कारेला, दल्ला मोरा, और जर्मनी[9] अधिक उन्नत और सामान्य परिणाम प्राप्त किए,गैर-रेखीय परिवर्तन की आवश्यकता को हटा दिया और नियमितता पर केवल सरल मान्यताओं का उपयोग करके अनुमानित स्थिति के वैश्विक स्पर्शोन्मुख अभिसरण को वास्तविक स्थिति में सिद्ध किया गया था ।

परिवर्तित पर्यवेक्षक

जैसा कि ऊपर रैखिक स्थिति के लिए विचार की गई है, जो कि लुएनबर्गर पर्यवेक्षकों में उपस्थित चरम घटना स्विच किए गए पर्यवेक्षकों के उपयोग को उचित ठहराती है। जिसमे स्विच्ड प्रेक्षक मेंरिले या बाइनरी स्विच सम्मिलित होता है जो मापा आउटपुट में मिनट परिवर्तन का पता लगाने पर कार्य करता है। कुछ सामान्य प्रकार के स्विच्ड पर्यवेक्षकों में स्लाइडिंग मोड पर्यवेक्षक, नॉनलाइनियर विस्तारित अवस्था प्रेक्षक सम्मिलित हैं।[10] निश्चित समय पर्यवेक्षक,[11] उच्च लाभ प्रेक्षक को स्विच किया गया था [12] और प्रेक्षक को एकजुट करना था।[13] जिससे स्लाइडिंग मोड नियंत्रण या स्लाइडिंग मोड प्रेक्षक अनुमानित स्थितियों को ऊनविम पृष्ठ पर ले जाने के लिए गैर-रेखीय उच्च-लाभ फीडबैक का उपयोग करता है जहां अनुमानित आउटपुट और मापा आउटपुट के बीच कोई अंतर नहीं होता है। जो कि प्रेक्षक में उपयोग किए जाने वाले गैर-रैखिक लाभ को समान्य रूप से अनुमानित - मापा आउटपुट त्रुटि के साइन फलन (अथार्त , एसजीएन) जैसे स्केल किए गए स्विचिंग फलन के साथ कार्यान्वित किया जाता है। इसलिए, इस उच्च-लाभ प्रतिक्रिया के कारण, प्रेक्षक के सदिश क्षेत्र में क्रीज होती है जिससे प्रेक्षक प्रक्षेपवक्रवक्र के साथ स्लाइड करें जहां अनुमानित आउटपुट मापा आउटपुट से बिल्कुल मेल खाता है। इसलिए, यदि प्रणाली अपने आउटपुट से अवलोकन योग्य है, तो प्रेक्षक स्थितियों को वास्तविक प्रणाली स्थितियों में ले जाया जाएगा। इसके अतिरिक्त, स्लाइडिंग मोड प्रेक्षक को चलाने के लिए त्रुटि के संकेत का उपयोग करने से, प्रेक्षक प्रक्षेप पथ विभिन्न प्रकार के ध्वनि के प्रति असंवेदनशील हो जाते हैं। इसलिए, कुछ स्लाइडिंग मोड पर्यवेक्षकों में कलमन फ़िल्टर के समान आकर्षक गुण होते हैं किन्तु सरल कार्यान्वयन के साथ लाया जाता है ।[2][3]

जैसा कि ड्रैकुनोव ने सुझाव दिया था, [14] एक स्लाइडिंग मोड प्रेक्षकको गैर-रेखीय प्रणालियों के एक वर्ग के लिए भी डिज़ाइन किया जा सकता है। ऐसे पर्यवेक्षक को मूल वेरिएबल अनुमान के संदर्भ में लिखा जा सकता है और उसका रूप होता है

जहाँ :

  • सदिश स्केलर साइनम फलन को आयामों तक विस्तारित करता है। वह है,
    सदिश के लिए .
  • सदिश इसमें ऐसे घटक हैं जो आउटपुट फलन हैं और इसके दोहराए गए लाई डेरिवेटिव है। जो कि विशेष रूप से,
    जहां सदिश क्षेत्र के साथ आउटपुट फलन का ith Lie व्युत्पन्न है (अथार्त , गैर-रेखीय प्रणाली के प्रक्षेपवक्र के साथ)। विशेष स्थिति में जहां प्रणाली में कोई इनपुट नहीं है या n की सापेक्ष डिग्री है, आउटपुट और इसके डेरिवेटिव का एक संग्रह है। क्योंकि इस पर्यवेक्षक को अच्छी तरह से परिभाषित करने के लिए के जैकोबियन रैखिककरण का व्युत्क्रम उपस्थित होना चाहिए, परिवर्तन एक स्थानीय भिन्नता होने की गारंटी है।
  • विकर्ण आव्यूह लाभ का इतना है कि
    जहाँ , प्रत्येक के लिए , तत्व और स्लाइडिंग मोड की पहुंच सुनिश्चित करने के लिए उपयुक्त रूप से बड़ा होता है ।
  • प्रेक्षक सदिश इस प्रकार कि
    जहाँ यहां स्केलर के लिए परिभाषित सामान्य साइन फलन है, और स्लाइडिंग मोड मेंअसंतत फलन के समतुल्य मान ऑपरेटर को दर्शाता है।

इस विचार को संक्षेप में इस प्रकार समझाया जा सकता है। स्लाइडिंग मोड के सिद्धांत के अनुसार, प्रणाली व्यवहार का वर्णन करने के लिए, बार स्लाइडिंग मोड प्रारंभ होने पर, फलन समकक्ष मानों द्वारा प्रतिस्थापित किया जाना चाहिए (स्लाइडिंग मोड नियंत्रण के सिद्धांत में समकक्ष नियंत्रण देखें)। जो कि वास्तव में, यह उच्च आवृत्ति के साथ स्विच (चैटर) करता है और धीमा घटक समतुल्य मूल्य के समान होता है। उच्च आवृत्ति घटक से छुटकारा पाने के लिए उपयुक्त लोपास फ़िल्टर प्रयुक्त करने से समतुल्य नियंत्रण का मूल्य प्राप्त किया जा सकता है, जिसमें अनुमानित प्रणाली की स्थिति के बारे में अधिक जानकारी होती है। जो ऊपर वर्णित प्रेक्षक आदर्श रूप से सीमित समय में गैर-रेखीय प्रणाली की स्थिति प्राप्त करने के लिए इस विधि का विभिन्न बार उपयोग करता है।


संशोधित अवलोकन त्रुटि को परिवर्तित अवस्थाओं में लिखा जा सकता है। विशेष रूप से,

इसलिए