एनालॉग सिग्नल प्रोसेसिंग
एनालॉग सिग्नल प्रोसेसिंग विशेष प्रकार की सिग्नल प्रोसेसिंग है जो कुछ एनालॉग माध्यमों द्वारा निरंतर फ़ंक्शन एनालॉग सिग्नल पर किया जाता है (असतत डिजिटल सिग्नल प्रोसेसिंग के विपरीत जहां सिग्नल प्रोसेसिंग डिजिटल प्रक्रिया द्वारा की जाती है)। एनालॉग किसी ऐसी चीज को प्रदर्शित करता है जिसे गणितीय रूप से निरंतर मानों के सेट के रूप में दर्शाया जाता है। यह डिजिटल से भिन्न है जो सिग्नल का प्रतिनिधित्व करने के लिए असतत मात्राओं की श्रृंखला का उपयोग करता है। एनालॉग मान सामान्यतः इलेक्ट्रॉनिक उपकरणों में घटकों के निकट वोल्टेज, विद्युत प्रवाह या विद्युत आवेश के रूप में दर्शाए जाते हैं। ऐसी भौतिक मात्राओं को प्रभावित करने वाले एरर या नॉइज़ के परिणामस्वरूप ऐसी भौतिक मात्राओं द्वारा दर्शाए गए सिग्नलों में संगत एरर होगी।
'एनालॉग सिग्नल प्रोसेसिंग' के उदाहरणों में लाउडस्पीकर में क्रॉसओवर फिल्टर, स्टीरियो पर बास, ट्रेबल और वॉल्यूम कण्ट्रोल और टीवी पर टिंट कण्ट्रोल सम्मिलित हैं। सामान्य एनालॉग प्रोसेसिंग एलिमेंट्स में कैपेसिटर, रेसिस्टर्स और इंडक्टर्स (निष्क्रिय एलिमेंट्स के रूप में) और ट्रांजिस्टर या ऑपरेशनल एंप्लीफायर (पैसिव एलिमेंट्स के रूप में) सम्मिलित हैं।
एनालॉग सिग्नल प्रोसेसिंग में प्रयुक्त उपकरण
सिस्टम के व्यवहार को गणितीय रूप से प्रतिरूपित किया जा सकता है और इसे टाइम डोमेन में h(t) के रूप में और फ्रीक्वेंसी डोमेन में H(s) के रूप में दर्शाया जाता है, जहां s = a + ib, या s = a के रूप में कार्य्प्लेक्स नंबर है। इलेक्ट्रिकल इंजीनियरिंग के संदर्भ में +jb (इलेक्ट्रिकल इंजीनियर i के अतिरिक्त j का उपयोग करते हैं क्योंकि करंट को वेरिएबल i द्वारा दर्शाया जाता है)। इनपुट सिग्नल को सामान्यतः x(t) ) या X(s) कहा जाता है और आउटपुट सिग्नल को सामान्यतः y(t) या Y(s) कहा जाता है।
कनवल्शन
कनवल्शन सिग्नल प्रोसेसिंग में मूल अवधारणा है जो बताती है कि आउटपुट सिग्नल का शोध करने के लिए इनपुट सिग्नल को सिस्टम के फ़ंक्शन के साथ जोड़ा जा सकता है। रिवर्स और शिफ्टेड होने के पश्चात यह दो वावेफोर्म्स के उत्पाद का अभिन्न अंग है; कनवल्शन का प्रतीक * है।
यह कनवल्शन इंटीग्रल है और इसका उपयोग सिग्नल और सिस्टम के कनवल्शन का शोध करने के लिए किया जाता है; सामान्यतः a = -∞ और b = +∞ है।
दो वेवफॉर्म्स f और g पर विचार किया जाता है। कनवल्शन की गणना करके, हम यह निर्धारित करते हैं कि फ़ंक्शन f के समान बनने के लिए रिवर्स फ़ंक्शन g को x-एक्सिस के साथ कितना शिफ्टेड किया जाना चाहिए। कनवल्शन फंक्शन अनिवार्य रूप से एक्सिस के साथ फ़ंक्शन g को रिवर्स और स्लाइड करता है, और स्लाइडिंग की प्रत्येक संभावित मात्रा के लिए उनके (f रिवर्स और शिफ्टेड g) उत्पाद के अभिन्न अंग की गणना करता है। जब फ़ंक्शन मैच होते हैं, तो (f*g) का मान अधिकतम हो जाता है। ऐसा इसलिए होता है क्योंकि जब सकारात्मक क्षेत्र (पीकस) या नकारात्मक क्षेत्र कई गुना बढ़ जाते हैं, तो वे अभिन्न अंग में योगदान करते हैं।
फूरियर ट्रांसफॉर्म
फूरियर ट्रांसफॉर्म ऐसा फ़ंक्शन है जो टाइम डोमेन में सिग्नल या सिस्टम को फ़्रीक्वेंसी डोमेन में परिवर्तित कर देता है, किन्तु यह केवल कुछ फ़ंक्शनों के लिए कार्य करता है। फूरियर ट्रांसफॉर्म द्वारा जिस बाधा पर सिस्टम या सिग्नल को ट्रांसफॉर्म किया जा सकता है, वह है:
यह फूरियर ट्रांसफॉर्म इंटीग्रल है:
सामान्यतः फूरियर ट्रांसफॉर्म इंटीग्रल का उपयोग ट्रांसफॉर्म को निर्धारित करने के लिए नहीं किया जाता है; इसके अतिरिक्त, किसी सिग्नल या सिस्टम के फूरियर ट्रांसफॉर्म का शोध करने के लिए ट्रांसफ़ॉर्म जोड़े की तालिका का उपयोग किया जाता है। इनवर्स फूरियर ट्रांसफॉर्म का उपयोग फ्रीक्वेंसी डोमेन से टाइम डोमेन पर जाने के लिए किया जाता है:
प्रत्येक सिग्नल या सिस्टम जिसे ट्रांसफॉर्म किया जा सकता है, उसमें यूनिक फूरियर ट्रांसफॉर्म होता है। किसी भी फ्रीक्वेंसी सिग्नल के लिए केवल एक ही समय सिग्नल होता है।
लाप्लास ट्रांसफॉर्म
लाप्लास ट्रांसफॉर्म जेनेरलीज़ेड फूरियर ट्रांसफॉर्म है। यह किसी भी सिस्टम या सिग्नल के ट्रांसफॉर्मेशन की अनुमति देता है क्योंकि यह फूरियर ट्रांसफॉर्म के जैसे केवल jω लाइन के अतिरिक्त कॉम्प्लेक्स प्लेन में ट्रांसफॉर्म होता है। मुख्य अंतर यह है कि लाप्लास ट्रांसफॉर्म में अभिसरण का क्षेत्र होता है जिसके लिए ट्रांसफॉर्म मान्य होता है। इसका तात्पर्य यह है कि फ्रीक्वेंसी में सिग्नल के टाइम में एक से अधिक सिग्नल हो सकते हैं; ट्रांसफॉर्म के लिए करेक्ट टाइम सिग्नल अभिसरण के क्षेत्र द्वारा निर्धारित किया जाता है। यदि अभिसरण के क्षेत्र में jω एक्सिस सम्मिलित है, तो jω को s के लिए लाप्लास ट्रांसफॉर्म में प्रतिस्थापित किया जा सकता है और यह फूरियर ट्रांसफॉर्म के समान है। लाप्लास ट्रांसफॉर्म है:
और इनवर्स लाप्लास ट्रांसफॉर्म, यदि X(s) की सभी विलक्षणताएँ काम्प्लेक्स प्लेन के बाएँ आधे भाग में हैं:
बोडे प्लॉट्स
बोडे प्लॉट सिस्टम के लिए परिमाण के प्रति फ्रीक्वेंसी और फेज के प्रति फ्रीक्वेंसी के प्लाट हैं। मेगनीटूड एक्सिस [डेसिबल] (डीबी) में है। फेज एक्सिस या तो डिग्री या रेडियन में है। फ्रीक्वेंसी एक्सिस [लघुगणकीय पैमाने] में हैं। ये उपयोगी हैं क्योंकि साइनसोइडल इनपुट के लिए, आउटपुट फ्रीक्वेंसी पर परिमाण प्लॉट के मान से गुणा किया जाता है और फ्रीक्वेंसी पर फेज प्लॉट के मान से स्थानांतरित होता है।
डोमेन
टाइम डोमेन
यह वह डोमेन है जिससे अधिकांश लोग परिचित हैं। टाइम डोमेन में प्लॉट टाइम के संबंध में सिग्नल के एम्पलीटूड को दर्शाता है।
फ्रीक्वेंसी डोमेन
फ़्रीक्वेंसी डोमेन में प्लॉट प्रत्येक फ़्रीक्वेंसी पर या तो फेज़ शिफ्ट या सिग्नल के परिमाण को दर्शाता है, जिस पर यह उपस्तिथ है। ये टाइम सिग्नल के फूरियर ट्रांसफॉर्म को लेकर पाया जा सकता है और बोड प्लॉट के समान ही प्लॉट किया जाता है।
सिग्नल
जबकि एनालॉग सिग्नल प्रोसेसिंग में किसी भी सिग्नल का उपयोग किया जा सकता है, ऐसे कई प्रकार के सिग्नल हैं जो अधिक उपयोग किए जाते हैं।
साइनसोइड्स
साइन लहर एनालॉग सिग्नल प्रोसेसिंग का बिल्डिंग ब्लॉक है। सभी वास्तविक विश्व सिग्नलों को फूरियर श्रृंखला के माध्यम से साइनसोइडल फ़ंक्शनों के अनंत योग के रूप में दर्शाया जा सकता है। यूलर के सूत्र के अनुप्रयोग द्वारा ज्यावक्रीय फलन को घातांक के रूप में प्रदर्शित किया जा सकता है।
आवेग
आवेग (डिराक डेल्टा समारोह) को सिग्नल के रूप में परिभाषित किया गया है जिसमें अनंत परिमाण है और के नीचे क्षेत्र के साथ असीम रूप से संकीर्ण चौड़ाई है, जो शून्य पर केंद्रित है। आवेग को साइनसोइड्स के अनंत योग के रूप में दर्शाया जा सकता है जिसमें सभी संभावित फ्रीक्वेंसीयाँ सम्मिलित हैं। वास्तव में, इस तरह के सिग्नल उत्पन्न करना संभव नहीं है, किन्तु यह बड़े आयाम, संकीर्ण नाड़ी के साथ पर्याप्त रूप से अनुमानित किया जा सकता है, ताकि उच्च स्तर की सटीकता के लिए नेटवर्क में सैद्धांतिक आवेग प्रतिक्रिया का उत्पादन किया जा सके। आवेग का प्रतीक δ(t) है। यदि आवेग को सिस्टम में इनपुट के रूप में उपयोग किया जाता है, तो आउटपुट को आवेग प्रतिक्रिया के रूप में जाना जाता है। आवेग प्रतिक्रिया सिस्टम को परिभाषित करती है क्योंकि इनपुट में सभी संभावित फ्रीक्वेंसीयों का प्रतिनिधित्व किया जाता है
फेज
यूनिट स्टेप फ़ंक्शन, जिसे हैवीसाइड स्टेप फंक्शन भी कहा जाता है, सिग्नल है जिसमें शून्य से पहले शून्य का परिमाण और शून्य के पश्चात का परिमाण होता है। इकाई फेज के लिए प्रतीक यू (टी) है। यदि किसी सिस्टम में इनपुट के रूप में स्टेप का उपयोग किया जाता है, तो आउटपुट को स्टेप रिस्पांस कहा जाता है। स्टेप रिस्पांस दिखाता है कि सिस्टम अचानक इनपुट पर कैसे प्रतिक्रिया करता है, स्विच को चालू करने के समान। आउटपुट के स्थिर होने से पहले की अवधि को सिग्नल का क्षणिक भाग कहा जाता है। फेज प्रतिक्रिया को अन्य सिग्नलों के साथ गुणा किया जा सकता है यह दिखाने के लिए कि जब कोई इनपुट अचानक चालू होता है तो सिस्टम कैसे प्रतिक्रिया करता है।
यूनिट स्टेप फंक्शन डायराक डेल्टा फंक्शन से संबंधित है;
सिस्टम
लीनियर टाइम-इनवेरिएंट (एलटीआई)
रैखिकता का अर्थ है कि यदि आपके पास दो इनपुट और दो संबंधित आउटपुट हैं, यदि आप उन दो इनपुटों का रैखिक संयोजन लेते हैं तो आपको आउटपुट का रैखिक संयोजन मिलेगा। रैखिक सिस्टम का उदाहरण प्रथम क्रम निम्न-पास या उच्च-पास फ़िल्टर है। रैखिक प्रणालियाँ एनालॉग उपकरणों से बनी होती हैं जो रैखिक गुणों को प्रदर्शित करती हैं। इन उपकरणों को पूरी तरह से रैखिक नहीं होना चाहिए, किन्तु ऑपरेशन का क्षेत्र होना चाहिए जो रैखिक हो। ऑपरेशनल एम्पलीफायर गैर-रैखिक उपकरण है, किन्तु इसमें ऑपरेशन का क्षेत्र है जो रैखिक है, इसलिए इसे ऑपरेशन के उस क्षेत्र के भीतर रैखिक के रूप में तैयार किया जा सकता है। टाइम-इनवेरियन का मतलब है कि जब आप सिस्टम शुरू करते हैं तो इससे कोई फर्क नहीं पड़ता, वही आउटपुट परिणाम देगा। उदाहरण के लिए, यदि आपके पास सिस्टम है और आज उसमें इनपुट डालते हैं, तो आपको वही आउटपुट मिलेगा यदि आप इसके अतिरिक्त कल सिस्टम शुरू करते हैं। कोई वास्तविक सिस्टम नहीं है जो LTI है, किन्तु कई प्रणालियों को LTI के रूप में मॉडल किया जा सकता है ताकि यह निर्धारित किया जा सके कि उनका आउटपुट क्या होगा। सभी प्रणालियों में तापमान, सिग्नल स्तर या अन्य कारकों जैसी चीजों पर कुछ निर्भरता होती है जो उन्हें गैर-रैखिक या गैर-टाइम-अट्रांसफॉर्मीय बनाती हैं, किन्तु अधिकांश एलटीआई के रूप में मॉडल के लिए पर्याप्त स्थिर हैं। रैखिकता और टाइम-अट्रांसफॉर्म महत्वपूर्ण हैं क्योंकि वे मात्र प्रकार के सिस्टम हैं जिन्हें पारंपरिक एनालॉग सिग्नल प्रोसेसिंग विधियों का उपयोग करके आसानी से हल किया जा सकता है। बार सिस्टम गैर-रैखिक या गैर-टाइम-अट्रांसफॉर्मीय हो जाती है, यह गैर-रैखिक अंतर समीकरण समस्या बन जाती है, और उनमें से बहुत कम हैं जो वास्तव में हल हो सकते हैं। (हायकिन और वैन वीन 2003)
यह भी देखें
- एनालॉग इलेक्ट्रानिक्स
- संधारित्र
- एनालॉग और डिजिटल रिकॉर्डिंग की तुलना
- अंकीय संकेत प्रक्रिया
- विद्युत अभियन्त्रण
- इलेक्ट्रॉनिक्स
- प्रारंभ करनेवाला
- रोकनेवाला
- सिग्नल (इलेक्ट्रिकल इंजीनियरिंग)
- संकेत आगे बढ़ाना
- ट्रांजिस्टर
सर्किट
फिल्टर
संदर्भ
- Haykin, Simon, and Barry Van Veen. Signals and Systems. 2nd ed. Hoboken, NJ: John Wiley and Sons, Inc., 2003.
- McClellan, James H., Ronald W. Schafer, and Mark A. Yoder. Signal Processing First. Upper Saddle River, NJ: Pearson Education, Inc., 2003.