परिणामी

From Vigyanwiki
Revision as of 12:22, 17 February 2023 by alpha>Suman

गणित में, दो बहुपदों का परिणाम उनके गुणांकों की बहुपद व्यंजक है, जो शून्य के बराबर है यदि और केवल यदि बहुपदों में फलन की सामान्य मूल (संभवतः क्षेत्र विस्तार में), या, समतुल्य, सामान्य कारक ( उनके गुणांक के क्षेत्र में) है। कुछ प्राचीन ग्रन्थों में परिणामी को निर्मूलक भी कहा गया है।[1]

परिणामी का विस्तृत रूप से संख्या सिद्धांत में उपयोग किया जाता है, या तो सीधे या विवेचक के माध्यम से, जो अनिवार्य रूप से बहुपद और उसके व्युत्पन्न का परिणाम है। परिमेय संख्या या बहुपद गुणांक वाले दो बहुपदों के परिणाम की कंप्यूटर पर कुशलता से गणना की जा सकती है। यह कंप्यूटर बीजगणित का आधारभूत उपकरण है, और अधिकांश कंप्यूटर बीजगणित प्रणालियों का अंतर्निहितफलन है। इसका उपयोग, दूसरों के बीच, बेलनाकार बीजगणितीय अपघटन, तर्कसंगत फलनों के प्रतीकात्मक एकीकरण और बहुपद चर बहुपद समीकरणों की संख्या द्वारा परिभाषित वक्रों के चित्रण के लिए किया जाता है।

n वेरिएबल्स में n सजातीय बहुपदों का परिणाम (सामान्य परिणाम से इसे अलग करने के लिए 'बहुभिन्नरूपी परिणाम' या 'मैकाले का परिणाम' भी कहा जाता है।) सामान्यीकरण है, जो सामान्य परिणाम के फ्रांसिस सोवर मैकाले द्वारा द्वारा प्रस्तुत किया गया है।[2] यह ग्रोबनेर के साथ उन्मूलन सिद्धांत के मुख्य उपकरणों में से एक है।

संकेत पद्धति

दो अविभाज्य बहुपदों का परिणाम A और B सामान्य रूप से या द्वारा निरूपित किया जाता है।

परिणामी के कई अनुप्रयोगों में, बहुपद कई अनिश्चितताओं पर निर्भर करते हैं और गुणांक के रूप में अन्य अनिश्चितताओं में बहुपदों के साथ उनके अनिश्चित में से एक में अविभाजित बहुपद के रूप में माना जा सकता है। इस स्थितियों में, परिणामी को परिभाषित करने और गणना करने के लिए चुने गए अनिश्चित को अधोलिखित: या के रूप में दर्शाया गया है।

परिणामी की परिभाषा में बहुपदों की कोटि का उपयोग किया जाता है। चूंकि, कोटि का बहुपद d उच्च कोटि के बहुपद के रूप में भी माना जा सकता है जहां प्रमुख गुणांक शून्य हैं। यदि परिणामी के लिए ऐसी उच्च कोटि का उपयोग किया जाता है, तो इसे सामान्यतः अधोलिखित या अधिलेख के रूप में दर्शाया जाता है, जैसे या


परिभाषा

क्षेत्र (गणित) या क्रमविनिमेय वलय पर दो अविभाजित बहुपदों के परिणाम को सामान्यतः उनके सिल्वेस्टर आव्यूह के निर्धारक के रूप में परिभाषित किया जाता है। अधिक त्रुटिहीन, मान लीजिये

और

क्रमशः घात d और e वाले शून्येतर बहुपद हों। आइए हम आयाम का सदिश स्थान (या मुक्त मापांक यदि गुणांक क्रमविनिमेय वलय से संबंधित है।) i द्वारा निरूपित करते हैं। जिनके तत्व i सख्ती से कम कोटि के बहुपद हैं। वो मैप

ऐसा है कि

ही आयाम के दो स्थानों के बीच रेखीय नक्शा है। x की शक्तियों के आधार पर (अवरोही क्रम में सूचीबद्ध), यह नक्शा आयाम d + e के वर्ग आव्यूह द्वारा दर्शाया गया है,जिसे A और B के सिल्वेस्टर आव्यूह कहा जाता है। (कई लेखकों के लिए और लेख सिल्वेस्टर आव्यूह में, सिल्वेस्टर आव्यूह को इस आव्यूह के स्थानान्तरण के रूप में परिभाषित किया गया है; इस सम्मेलन का उपयोग यहां नहीं किया गया है, क्योंकि यह एक रेखीय मानचित्र के आव्यूह को लिखने के लिए सामान्य सम्मेलन को तोड़ता है।)।

इस प्रकार A और B का परिणाम निर्धारक है

जिसमें bj के ai और d स्तम्भ के e स्तम्भ हैं (तथ्य यह है कि a के पहले स्तम्भ और b के पहले स्तम्भ की लंबाई समान है, अर्थात d = e, यहाँ केवल निर्धारक के प्रदर्शन को सरल बनाने के लिए है।)। उदाहरण के लिए, d = 3 और e = 2 लेने पर हमें प्राप्त होता है।

यदि बहुपदों के गुणांक अभिन्न कार्यक्षेत्र से संबंधित हैं, तो

जहाँ और क्रमशः मूलें हैं, उनकी बहुलताओं के साथ गिना जाता है। A और B किसी भी बीजगणितीय रूप से बंद क्षेत्र में अभिन्न कार्यक्षेत्र सम्मिलित है।

यह नीचे दिखाई देने वाले परिणामी के लक्षण वर्णन गुणों का सीधा परिणाम है। पूर्णांक गुणांक के सामान्य स्थितियों में, बीजगणितीय रूप से बंद क्षेत्र को सामान्यतः जटिल संख्याओं के क्षेत्र के रूप में चुना जाता है।

गुण

इस खंड और इसके उपखंडों में, A और B में दो बहुपद हैं x संबंधित कोटि के d और e, और उनके परिणामी को निरूपित किया जाता है।



गुणों की विशेषता

गुणांक वाले दो बहुपदों के परिणाम के लिए निम्नलिखित गुण मान्य है।

क्रमविनिमेय वलय R में गुणांक वाले दो बहुपदों के परिणाम के लिए निम्नलिखित गुण हैं। यदि R एक क्षेत्र या अधिक सामान्यतः एक अभिन्न कार्यक्षेत्र है, परिणामी दो बहुपदों के गुणांकों का अद्वितीयफलन है जो इन गुणों को संतुष्ट करता है।

  • यदि R और वलय का S उपवलय है, तब अर्थात् A और B का परिणाम समान होता है जब R या S बहुपदों पर विचार किया जाता है।
  • यदि d = 0 (अर्थात् यदि अशून्य स्थिरांक है।) तब इसी प्रकार यदि e = 0, तब
  • *


शून्य

  • अभिन्न कार्यक्षेत्र में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है। यदि और केवल यदि उनके पास सकारात्मक कोटि के दो बहुपदों का सबसे बड़ा सामान्य विभाजक हो।
  • पूर्णांकीय प्रांत में गुणांक वाले दो बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र में सामान्य मूल हो।
  • e से कम कोटि का एक बहुपद P और d से कम कोटि का एक बहुपद Q उपस्थित है जैसे कि यह स्वैच्छिक क्रमविनिमेय वलय पर बहुपदों के लिए बेज़ाउट की पहचान का सामान्यीकरण है। दूसरे शब्दों में, दो बहुपदों का परिणाम इन बहुपदों द्वारा उत्पन्न आदर्श (वलय सिद्धांत) से संबंधित है।

वलय होमोमोर्फिज्म द्वारा अप्रसरण

मान लीजिये A और B संबंधित कोटि के दो बहुपद बनें d और e कम्यूटेटिव वलय में गुणांक के साथ R, और की वलय समरूपता R दूसरे क्रमविनिमेय वलय में S को प्रायुक्त करने बहुपद के गुणांकों का विस्तार होता है। बहुपद के छल्ले के समरूपता के लिए , जिसे द्वारा निरूपित भी किया जाता है। इस अंकन के साथ, हमारे पास है:

  • यदि की उपाधियाँ सुरक्षित रखता है A और B (अर्थात् यदि और ), तब
  • यदि और तब
  • यदि और और A के अग्रणी गुणांक है तब
  • यदि और और B के अग्रणी गुणांक है तब

निर्धारक के रूप में परिणामी की परिभाषा से इन गुणों को आसानी से घटाया जा सकता है। वे मुख्य रूप से दो स्थितियों में उपयोग किए जाते हैं। पूर्णांक गुणांक वाले बहुपदों के परिणाम की गणना करने के लिए, यह सामान्यतः मापांक अंकगणितीय कई प्राइम्स की गणना करने और चीनी शेष प्रमेय के साथ वांछित परिणाम प्राप्त करने के लिए तेज़ होता है। कब R अन्य अनिश्चित में बहुपद की वलय है, और S कुछ या सभी अनिश्चित संख्यात्मक मानों की विशेषज्ञता के द्वारा प्राप्त की गई वलय R है, इन गुणों को इस प्रकार से फिर से प्रारंभ किया जा सकता है जैसे कि विशेषज्ञता द्वारा कोटि को संरक्षित किया जाता है, दो बहुपदों के विशेषज्ञता का परिणाम परिणामी का विशेषज्ञता है। यह गुण मौलिक है, उदाहरण के लिए, बेलनाकार बीजगणितीय अपघटन के लिए।

चर के परिवर्तन के अनुसार व्युत्क्रम

  • यदि और के पारस्परिक बहुपद हैं A और B, क्रमशः, फिर

इसका अर्थ यह है कि परिणामी शून्य होने का गुण चर के रैखिक और प्रक्षेपी परिवर्तनों के अनुसार अपरिवर्तनीय है।

बहुपदों के परिवर्तन के अनुसार व्युत्क्रम

  • यदि a और b अशून्य स्थिरांक हैं (अर्थात वे अनिश्चित से स्वतंत्र हैं x), और A और B ऊपर के रूप में हैं, तो
  • यदि A और B ऊपर के रूप में हैं, और C और बहुपद है जैसे कि ACB की कोटि δ है, तब
विशेष रूप से, यदि कोई हो B या deg C < deg A – deg B मोनिक बहुपद है, तब
और यदि f = deg C > deg A – deg B = de, तब

इन गुणों का अर्थ है कि बहुपदों के लिए यूक्लिडियन एल्गोरिथ्म में, और इसके सभी प्रकार (छद्म-शेष अनुक्रम), दो लगातार शेष (या छद्म-शेष) के परिणाम प्रारंभिक बहुपदों के परिणामी से भिन्न होते हैं, जो कि गणना करना आसान है। इसके विपरीत, यह किसी को प्रारंभिक बहुपदों के परिणाम को अंतिम शेष या छद्म शेष के मान से निकालने की अनुमति देता है। यह बहुपद महानतम सामान्य विभाजक का प्रारंभिक विचार है, जो उपरोक्त फॉर्मूलों का उपयोग छद्म-शेष के रूप में सब-रिजल्टेंट बहुपदों को प्राप्त करने के लिए, और परिणामी को अंतिम गैर-शून्य छद्म-शेष के रूप में (परन्तु कि परिणामी शून्य न हो) करता है। यह एल्गोरिथम पूर्णांकों पर बहुपदों के लिए काम करता है या सामान्यतः त्रुटिहीन विभाजनों के अतिरिक्त किसी भी विभाजन के बिना एक अभिन्न कार्यक्षेत्र पर काम करता है (अर्थात, अंशों को सम्मिलित किए बिना)। इसमें अंकगणितीय संक्रियाएँ सम्मिलित हैं, चूंकि मानक एल्गोरिदम के साथ सिल्वेस्टर आव्यूह के निर्धारक की गणना के लिए अंकगणितीय संक्रियाओं की आवश्यकता होती है।

सामान्य गुण

इस भाग में, हम दो बहुपदों पर विचार करते हैं

और

किसका d + e + 2 गुणांक विशिष्ट अनिश्चित (चर) हैं। मान लीजिये

इन निर्धारकों द्वारा परिभाषित पूर्णांकों पर बहुपद वलय हो।

परिणामी कोटि के लिए d और e अधिकांश सामान्य परिणामी कहा जाता है। इसके निम्नलिखित गुण हैं।

  • बिल्कुल अलघुकरणीय बहुपद है।
  • यदि का आदर्श (वलय सिद्धांत) है द्वारा उत्पन्न A और B, तब द्वारा उत्पन्न प्रमुख आदर्श है .

एकरूपता

कोटि के लिए सामान्य परिणाम d और e विभिन्न विधियों से सजातीय बहुपद है। ज्यादा ठीक:

  • यह में कोटि e का सजातीय है।
  • यह में कोटि d का सजातीय है।
  • यह सभी चर और में कोटि d + e का सजातीय है।
  • यदि और को परिणामी i दिया जाता है। (अर्थात्, प्रत्येक गुणांक का परिणामी प्राथमिक सममित बहुपद के रूप में इसकी कोटि है), तो यह कुल परिणामी का de का अर्ध-सजातीय बहुपद है |
  • यदि P और Q संबंधित कोटि d और e के सजातीय बहुभिन्नरूपी बहुपद हैं , तो उनका परिणाम कोटि d और e में अनिश्चित x के संबंध में , निरूपित में § अंकन, अन्य अनिश्चित में कोटि de का सजातीय है।

उन्मूलन गुण

मान लीजिये एक बहुपद वलय (वलय सिद्धांत) में दो बहुपद वलय A और B द्वारा उत्पन्न आदर्श है, जहां क्षेत्र पर स्वयं बहुपद वलय है। यदि कम से कम A और B में x मोनिक बहुपद है, तब:

  • आदर्श और ही बीजगणितीय सेट को परिभाषित करें। वह nबीजगणितीय रूप से बंद क्षेत्र के तत्वों का टपल तत्वों का सामान्य शून्य है यदि और केवल यह शून्य है।
  • आदर्श मुख्य आदर्श के समान आदर्श का मूलांक है अर्थात्, प्रत्येक तत्व का गुणज है
  • के सभी अलघुकरणीय बहुपद के हर तत्व को में विभाजित करें

पहला अभिकथन परिणामी का मूल गुण है। अन्य अभिकथन दूसरे के तत्काल परिणाम हैं, जिन्हें निम्नानुसार सिद्ध किया जा सकता है।

जैसा की A और B में से कम से कम एक मोनिक है, एक nटपल का शून्य है यदि और केवल यदि उपस्थित है जैसे कि का A और B सामान्य शून्य है। ऐसा उभयनिष्ठ शून्य भी के सभी अवयवों का शून्य होता है इसके विपरीत यदि के तत्वों का सामान्य शून्य है यह परिणामी का शून्य है, और उपस्थित है ऐसा है कि का सामान्य शून्य है A और B. इसलिए और बिल्कुल वही शून्य हैं।

संगणना

सैद्धांतिक रूप से, परिणामी को मूलों के अंतर के उत्पाद के रूप में व्यक्त करने वाले सूत्र का उपयोग करके गणना की जा सकती है। चूंकि, जैसा कि मूलों की सामान्यतः गणना नहीं की जा सकती है, ऐसा एल्गोरिदम अक्षम और संख्यात्मक रूप से अस्थिर होगा। चूंकि परिणामी प्रत्येक बहुपद की मूलों का सममित बहुपद है, इसकी गणना सममित बहुपद के मौलिक प्रमेय का उपयोग करके भी की जा सकती है, किन्तु यह अत्यधिक अक्षम होगा।

जैसा कि परिणामी सिल्वेस्टर आव्यूह (और बेज़ाउट आव्यूह) का निर्धारक है, इसकी गणना निर्धारकों की गणना के लिए किसी भी एल्गोरिथ्म का उपयोग करके की जा सकती है। इसके लिये अंकगणितीय संक्रियाओं की आवश्यकता है। जैसा कि एल्गोरिदम उत्तम जटिलता के साथ जाना जाता है (नीचे देखें), इस पद्धति का व्यवहार में उपयोग नहीं किया जाता है।

यह § बहुपदों के परिवर्तन के तहत अपरिवर्तनीयता से आता है कि परिणामी की गणना बहुपदों के लिए यूक्लिडियन एल्गोरिदम से दृढ़ता से संबंधित है। इससे पता चलता है कि कोटि d और e के दो बहुपदों के परिणाम की गणना गुणांक के क्षेत्र में अंकगणितीय संचालन में की जा सकती है।

चूँकि, जब गुणांक पूर्णांक, परिमेय संख्या या बहुपद होते हैं, तो ये अंकगणितीय संचालन गुणांक के कई जीसीडी संगणनाओं को प्रायुक्त करते हैं जो समान क्रम के होते हैं और एल्गोरिथ्म को अक्षम बनाते हैं।

इस समस्या को समाधान करने और गुणांक के किसी भी अंश और किसी भी जीसीडी संगणना से बचने के लिए उपपरिणामस्वरूप छद्म-शेष अनुक्रम प्रस्तुत किए गए थे। पूर्णांक गुणांक वाले दो बहुपदों के परिणाम की गणना करने के लिए गुणांकों पर वलय समरूपता के अनुसार परिणामी के अच्छे व्यवहार का उपयोग करके एक अधिक कुशल एल्गोरिथ्म प्राप्त किया जाता है, एक उनके परिणामी मापांकों की पर्याप्त रूप से कई अभाज्य संख्याओं की गणना करता है और फिर चीनी शेष प्रमेय के साथ परिणाम का पुनर्निर्माण करता है।

पूर्णांकों और बहुपदों के तेजी से गुणन का उपयोग परिणामी और सबसे बड़े सामान्य विभाजक के लिए एल्गोरिदम की अनुमति देता है जिसमें उत्तम समय जटिलता होती है, जो गुणन की जटिलता के क्रम का होता है, इनपुट के आकार के लघुगणक ( से गुणा किया जाता है जहाँ s इनपुट बहुपदों के अंकों की संख्या की ऊपरी सीमा है)।

बहुपद प्रणालियों के लिए आवेदन

परिणामी बहुपद समीकरणों की प्रणालियों को समाधान करने के लिए प्रस्तुत किए गए थे और सबसे पुराना प्रमाण प्रदान करते हैं कि ऐसी प्रणालियों को समाधान करने के लिए कलन विधि उपस्थित हैं। ये मुख्य रूप से दो अज्ञात में दो समीकरणों की प्रणालियों के लिए अभिप्रेत हैं, किन्तु सामान्य प्रणालियों को समाधान करने की भी अनुमति देते हैं।

दो अज्ञात में दो समीकरणों की स्थितियां

दो बहुपद समीकरणों की प्रणाली पर विचार करें

जहाँ P और Q संबंधित d और e कुल कोटि के बहुपद है। तब में x बहुपद है, जो de कोटि की सामान्य गुण है (गुणों द्वारा § एकरूपता). मान का x की R मूल है यदि और केवल यदि या तो उपस्थित है। बीजगणितीय रूप से बंद क्षेत्र में जिसमें गुणांक होते हैं, जैसे कि , या और (इस स्थितियों में, कोई ऐसा कहता है P और Q के लिए अनंत पर उभयनिष्ठ मूल है ).

इसलिए, प्रणाली के समाधान की मूलों R की गणना करके प्राप्त किए जाते हैं, और प्रत्येक मूल के लिए की सामान्य मूल (ओं) और की गणना करना है।

बेज़ाउट प्रमेय का परिणाम , के मान से होता है की P और Q कोटि का उत्पाद . वास्तव में, चरों के रैखिक परिवर्तन के बाद, कोई यह मान सकता है कि, प्रत्येक रूट के लिए x परिणामी का, y का बिल्कुल मान है जैसे कि (x, y) का सामान्य शून्य P और Q है। इससे पता चलता है कि उभयनिष्ठ शून्यों की संख्या अधिक से अधिक परिणामी की कोटि है, जो कि P और Q अधिक से अधिक कोटि का गुणनफल है। कुछ तकनीकीताओं के साथ, इस प्रमाण को यह दिखाने के लिए बढ़ाया जा सकता है कि अनंत पर गुणा और शून्य की गिनती, शून्य की संख्या वास्तव में कोटि का उत्पाद है।

सामान्य स्थितियां

पहली दृष्टि में, ऐसा लगता है कि परिणामी समीकरणों की सामान्य बहुपद प्रणाली पर प्रायुक्त हो सकते हैं

हर जोड़ी के परिणाम की गणना करके इसके संबंध में अज्ञात को खत्म करने के लिए, और प्रक्रिया को दोहराते हुए जब तक कि एकतरफा बहुपद न मिल जाए। दुर्भाग्य से, यह कई नकली समाधान प्रस्तुत करता है, जिन्हें निकलना कठिन है।

19वीं शताब्दी के अंत में प्रारंभ की गई विधि इस प्रकार काम करती है: परिचय k − 1 नए अनिश्चित और गणना करें

यह बहुपद है जिनके गुणांक बहुपद हैं जिसके पास वह गुण है इन बहुपद गुणांकों का सामान्य शून्य है, यदि और केवल यदि अविभाज्य बहुपद सामान्य शून्य है, संभवतः अनंत पर दर्शाता है। इस प्रक्रिया को तब तक दोहराया जा सकता है जब तक कि अविभाजित बहुपद नहीं मिलते।

सही एल्गोरिथम प्राप्त करने के लिए विधि में दो पूरक जोड़े जाने चाहिए। सबसे पहले, प्रत्येक चरण में, चर के रैखिक परिवर्तन की आवश्यकता हो सकती है जिससे अंतिम चर में बहुपदों की कोटि उनकी कुल कोटि के समान हो। दूसरे, यदि किसी भी चरण पर, परिणामी शून्य है, तो इसका अर्थ है कि बहुपदों का उभयनिष्ठ गुणनखंड है और समाधान दो घटकों में विभाजित हो जाता है: जहां उभयनिष्ठ गुणनखंड शून्य है, और दूसरा जारी रखने से पहले कारक जो इस उभयनिष्ठ गुणनखंड को निकालकर प्राप्त किया जाता है।

यह एल्गोरिथम बहुत जटिल है और इसमें समय की जटिलता है। इसलिए, इसकी रुचि मुख्य रूप से ऐतिहासिक है।

अन्य अनुप्रयोग

संख्या सिद्धांत

बहुपद का विभेदक, जो संख्या सिद्धांत में मौलिक उपकरण है, बहुपद के परिणामी और उसके व्युत्पन्न के प्रमुख गुणांक द्वारा भागफल है।

यदि और बीजगणितीय संख्याएँ हैं जैसे कि , तब परिणामी की मूल है और की मूल है , जहाँ के बहुपद की घात है . इस तथ्य के साथ संयुक्त की मूल है , यह दर्शाता है कि बीजगणितीय संख्याओं का समुच्चय क्षेत्र (गणित) है।

मान लीजिये तत्व द्वारा उत्पन्न बीजगणितीय क्षेत्र विस्तार हो जो न्यूनतम बहुपद (क्षेत्र सिद्धांत) के रूप में। का हर तत्व रूप में लिखा जा सकता है जहाँ बहुपद है। तब की मूल है और यह परिणामी के न्यूनतम बहुपद की घात है


बीजगणितीय ज्यामिति

बहुपदों के शून्य के रूप में परिभाषित दो समतल बीजगणितीय वक्र दिए गए हैं P(x, y) और Q(x, y)परिणामी उनके प्रतिच्छेदन की गणना की अनुमति देता है। अधिक त्रुटिहीन, की मूलें प्रतिच्छेदन बिंदु और सामान्य ऊर्ध्वाधर स्पर्शोन्मुख के एक्स-निर्देशांक हैं, और की मूलें प्रतिच्छेदन बिंदु और सामान्य क्षैतिज स्पर्शोन्मुख के y-निर्देशांक हैं।

परिमेय वक्र को पैरामीट्रिक समीकरण द्वारा परिभाषित किया जा सकता है।

जहाँ P, Q और R बहुपद है। वक्र का अन्तर्निहित समीकरण किसके द्वारा दिया जाता है।

इस वक्र की कोटि उच्चतम कोटि है P, Q और R, जो परिणामी की कुल कोटि के बराबर है।

प्रतीकात्मक एकीकरण

प्रतीकात्मक एकीकरण में, तर्कसंगत अंश के प्रतिपक्षी की गणना करने के लिए, आंशिक अंश अपघटन का उपयोग तर्कसंगत भाग में अभिन्न को विघटित करने के लिए किया जाता है, जो तर्कसंगत अंशों का योग होता है, जिनके प्रतिपक्षी तर्कसंगत अंश होते हैं, और लघुगणकीय भाग जो तर्कसंगत अंश का योग होता है रूप के अंश

जहाँ Q वर्ग मुक्त बहुपद है और P से कम कोटि Q का बहुपद है। इस प्रकार के फलन के प्रतिपक्षी में आवश्यक रूप से लघुगणक और सामान्यतः बीजगणितीय संख्याएं(की मूलें Q) सम्मिलित होती हैं। वास्तव में, प्रतिपक्षी है

जहां योग की सभी जटिल मूलों Q पर चलता है।

इस व्यंजक में सम्मिलित बीजगणितीय संख्याओं की संख्या सामान्यतः Q की कोटि के बराबर होती है, किन्तु यह अधिकांश होता है कि कम बीजगणितीय संख्याओं वाले व्यंजक की गणना की जा सकती है। डैनियल लाजार्ड-रिओबू-बैरी ट्रैगर विधि एक अभिव्यक्ति उत्पन्न करती है, जहां बीजगणितीय संख्याओं की संख्या बीजगणितीय संख्याओं के साथ किसी भी गणना के बिना न्यूनतम होती है।

मान लीजिये

परिणामी का वर्ग-मुक्त गुणनखंड हो जो दाईं ओर दिखाई देता है। ट्रैगर ने सिद्ध कर दिया कि प्रतिपक्षी है

जहां आंतरिक योग (यदि योग शून्य है, खाली योग होने के संबध में) की मूलों पर चलते हैं, और x में कोटि i का बहुपद है। लाजार्ड-रियोबू योगदान इसका प्रमाण है कि कोटि i का और बहुपद सबसे बड़ा सामान्य विभाजक उपपरिणाम है इस प्रकार यह मुफ्त में प्राप्त किया जाता है यदि परिणामी की गणना बहुपद महानतम सामान्य विभाजक उपपरिणाम छद्म-शेष अनुक्रम|उपपरिणाम छद्म-शेष अनुक्रम द्वारा की जाती है।

कंप्यूटर बीजगणित

सभी पूर्ववर्ती अनुप्रयोग, और कई अन्य, दिखाते हैं कि परिणामी कंप्यूटर बीजगणित में मौलिक उपकरण है। वास्तव में अधिकांश कंप्यूटर बीजगणित प्रणालियों में परिणामकों की गणना का कुशलफलनान्वयन सम्मिलित है।

सजातीय परिणाम

परिणामी को दो अनिश्चित बहुपदों में दो सजातीय बहुपदों के लिए भी परिभाषित किया गया है। दो सजातीय बहुपद दिए गए हैं P(x, y) और Q(x, y) संबंधित कुल कोटियों का p और q, उनका सजातीय परिणाम रैखिक मानचित्र के एकपदी आधार पर आव्यूह का निर्धारक है

जहाँ A कोटि के द्विभाजित सजातीय बहुपदों पर चलता है q − 1, और B कोटि के सजातीय बहुपदों पर चलता है p − 1. दूसरे शब्दों में, का सजातीय परिणाम P और Q का परिणाम है

P(x, 1) और Q(x, 1) जब उन्हें कोटि के बहुपद के रूप में माना जाता है p और q (उनकी कोटि x उनकी कुल कोटि से कम हो सकता है):

(Res के कैपिटलाइज़ेशन का उपयोग यहाँ दो परिणामों को अलग करने के लिए किया गया है, चूँकि संक्षिप्त नाम के कैपिटलाइज़ेशन के लिए कोई मानक नियम नहीं है)।

सजातीय परिणामी में अनिवार्य रूप से सामान्य परिणाम के समान गुण होते हैं, अनिवार्य रूप से दो अंतरों के साथ: बहुपद मूलों के अतिरिक्त, प्रक्षेपी रेखा में शून्य पर विचार किया जाता है, और बहुपद की कोटि वलय होमोमोर्फिज्म के अनुसार नहीं बदल सकती है।

वह है:

  • अभिन्न कार्यक्षेत्र पर दो सजातीय बहुपदों का परिणाम शून्य होता है यदि और केवल यदि उनके गुणांक वाले बीजगणितीय रूप से बंद क्षेत्र पर गैर-शून्य सामान्य शून्य होता है।
  • यदि P और Q क्रमविनिमेय वलय में गुणांक वाले दो द्विभाजित सजातीय R, और बहुपद हैं R की वलय समरूपता S दूसरे क्रमविनिमेय वलय में , फिर बढ़ा रहा है बहुपदों पर R, वाले हैं
  • चर के किसी भी अनुमानित परिवर्तन के अनुसार शून्य होने के लिए सजातीय परिणामी की गुण अपरिवर्तनीय है।

सामान्य परिणामी की कोई भी गुण समान रूप से सजातीय परिणामी तक विस्तारित हो सकती है, और परिणामी गुण सामान्य परिणामी की संबंधित गुण की तुलना में या तो बहुत समान या सरल होती है।

मैकाले का परिणाम

मैकाले का परिणामी, जिसका नाम फ्रांसिस सॉवरबी मैकाले के नाम पर रखा गया है, जिसे n बहुभिन्नरूपी परिणामी, या बहुपद परिणामी भी कहा जाता है,[3] सजातीय परिणामी का n अनिश्चित में सजातीय बहुपदों का एक सामान्यीकरण है। मैकाले का परिणामी इन n सजातीय बहुपदों के गुणांकों में एक बहुपद है जो गायब हो जाता है यदि और केवल यदि बहुपदों में गुणांक वाले बीजीय रूप से बंद क्षेत्र में एक आम गैर-शून्य समाधान होता है, या समकक्ष, यदि बहुपदों द्वारा परिभाषित n हाइपर सतहें n –1 आयामी प्रोजेक्टिव स्पेस में एक आम शून्य है। मल्टीवेरिएट परिणामी, ग्रोबनेर बेस के साथ, प्रभावी उन्मूलन सिद्धांत (कंप्यूटर पर उन्मूलन सिद्धांत) के मुख्य उपकरणों में से एक है।

सजातीय परिणामी के प्रकार, मैकाले को निर्धारकों के साथ परिभाषित किया जा सकता है, और इस प्रकार वलय होमोमोर्फिज़्म के अनुसार अच्छा व्यवहार करता है। चूँकि, इसे निर्धारक द्वारा परिभाषित नहीं किया जा सकता है। यह इस प्रकार है कि पहले इसे सामान्य बहुपदोंपर परिभाषित करना आसान है।

सामान्य सजातीय बहुपदों का परिणाम

कोटि का सजातीय बहुपद d में n चर तक हो सकते हैं

गुणांक; इसे सामान्य कहा जाता है, यदि ये गुणांक अलग-अलग अनिश्चित हैं।

मान लीजिये होना n में सामान्य सजातीय बहुपद n संबंधित कुल कोटि के अनिश्चित साथ में, वे सम्मिलित होते हैं

अनिश्चित गुणांक।

मान लीजिये C इन सभी में पूर्णांकों पर बहुपद वलय हो

अनिश्चित गुणांक। बहुपद इस प्रकार से हैं और उनका परिणामी C से (अभी भी परिभाषित किया जाना है) संबंधित है।

मैकाले की कोटि पूर्णांक है जो मैकाले के सिद्धांत में मौलिक है। परिणामी को परिभाषित करने के लिए, कोई मैकाले आव्यूह पर विचार करता है, जो कि C-रैखिक नक्शा के एकपदी आधार पर आव्यूह है

जिसमें प्रत्येक कोटि के सजातीय बहुपदों पर चलता है और कोकार्यक्षेत्र C है D कोटि के सजातीय बहुपदों का मापांक है।

यदि n = 2, मैकाले आव्यूह स्क्वायर आव्यूह है, और वर्ग आव्यूह है, किन्तु यह n > 2 अब सत्य नहीं है। इस प्रकार, निर्धारक पर विचार करने के अतिरिक्त, सभी अधिकतम लघु (रैखिक बीजगणित) पर विचार किया जाता है, जो वर्ग उपमात्रियों के निर्धारक होते हैं जिनकी मैकाले आव्यूह के रूप में कई पंक्तियाँ होती हैं। मैकाले ने सिद्ध किया कि C-आदर्श इन प्रमुख नाबालिगों द्वारा उत्पन्न प्रमुख आदर्श है, जो इन नाबालिगों के सबसे बड़े सामान्य विभाजक द्वारा उत्पन्न होता है। जैसा कि पूर्णांक गुणांक वाले बहुपदों के साथ काम कर रहा है, यह सबसे बड़ा सामान्य विभाजक इसके चिह्न तक परिभाषित किया गया है। सामान्य मैकाले का परिणाम सबसे बड़ा सामान्य विभाजक है जो 1 बन जाता है, जब, प्रत्येक i के लिए , शून्य के सभी गुणांकों के लिए प्रतिस्थापित किया जाता है और के गुणांक को छोड़कर जिसके लिए प्रतिस्थापित किया गया है।

सामान्य मैकाले परिणामी के गुण

  • सामान्य मैकाले परिणामी अलघुकरणीय बहुपद है।
  • यह कोटि का सजातीय है के गुणांक में जहाँ बेज़ाउट प्रमेय है।
  • कोटि के प्रत्येक एकपदी के परिणाम के साथ उत्पाद D में के आदर्श के अंतर्गत आता द्वारा उत्पन्न है


क्षेत्र पर बहुपदों का परिणाम

अब से, हम मानते हैं कि सजातीय बहुपद कोटियों का क्षेत्र में उनके गुणांक हैं (गणित) k, अर्थात् वे इससे संबंधित हैं उनके परिणामी को के तत्व के रूप में परिभाषित किया गया है k के वास्तविक गुणांकों द्वारा अनिश्चित गुणांकों को सामान्य परिणामी में प्रतिस्थापित करके प्राप्त किया जाता है

परिणामी की मुख्य गुण यह है कि यह शून्य है यदि और केवल यदि के बीजगणितीय रूप से बंद विस्तार में शून्येतर k सामान्य शून्य है।

केवल यदि इस प्रमेय का हिस्सा पूर्ववर्ती पैराग्राफ की अंतिम गुण से निकलता है, और हिल्बर्ट के नलस्टेलेंसैट्ज प्रोजेक्टिव नलस्टेलेंसैट्ज का प्रभावी संस्करण है: यदि परिणामी गैर-शून्य है, तो

जहाँ मैकाले कोटि है, और अधिकतम सजातीय आदर्श है। इसका अर्थ यह है कि अद्वितीय सामान्य शून्य के अतिरिक्त कोई अन्य सामान्य शून्य, (0, ..., 0), का नहीं है


संगणनीयता

चूंकि परिणामी की गणना निर्धारकों और बहुपद महानतम सामान्य विभाजकों की गणना करने के लिए कम हो सकती है, परिणामों की गणना के लिए चरणों की सीमित संख्या में एल्गोरिदम हैं।

चूँकि, सामान्य परिणामी बहुत उच्च कोटि का बहुपद है (घातांक में n) बड़ी संख्या में अनिश्चितताओं पर निर्भर करता है। यह इस प्रकार है, बहुत छोटे को छोड़कर n और इनपुट बहुपदों की बहुत छोटी कोटि, सामान्य परिणाम व्यवहार में, आधुनिक कंप्यूटरों के साथ भी गणना करना असंभव है। इसके अतिरिक्त, सामान्य परिणामी के एकपद्स की संख्या इतनी अधिक है, कि, यदि यह गणना योग्य होगा, तो परिणाम को उपलब्ध स्मृति उपकरणों पर संग्रहीत नहीं किया जा सकता है, यहां तक ​​कि छोटे मूल्यों के लिए भी n और इनपुट बहुपदों की कोटि।

इसलिए, परिणामी की गणना करना केवल उन बहुपदों के लिए समझ में आता है जिनके गुणांक क्षेत्र से संबंधित हैं या क्षेत्र में कुछ अनिश्चित में बहुपद हैं।

क्षेत्र में गुणांक वाले इनपुट बहुपदों के स्थितियों में, परिणामी का त्रुटिहीन मूल्य संभवतः ही कभी महत्वपूर्ण होता है, केवल इसकी समानता (या नहीं) शून्य मायने रखती है। जैसा कि परिणामी शून्य है यदि और केवल यदि मैकाले आव्यूह की रैंक इसकी पंक्तियों की संख्या से कम है, तो यह समानता शून्य हो सकती है, जिसे मैकाले आव्यूह में गॉसियन विलोपन प्रायुक्त करके परीक्षण किया जा सकता है। यह समय जटिलता प्रदान करता है जहाँ d इनपुट बहुपद की अधिकतम कोटि है।

और स्थितियां जहां परिणामी की गणना उपयोगी जानकारी प्रदान कर सकती है, जब इनपुट बहुपद के गुणांक कम संख्या में बहुपद होते हैं, जिन्हें अधिकांश पैरामीटर कहा जाता है। इस स्थितियों में, परिणामी, यदि शून्य नहीं है, तो पैरामीटर स्थान में ऊनविम पृष्ठ को परिभाषित करता है। बिंदु इस हाइपर सतह से संबंधित है, यदि और केवल यदि के मान हैं जो, बिंदु के निर्देशांक के साथ इनपुट बहुपदों का शून्य है। दूसरे शब्दों में, परिणामी के उन्मूलन सिद्धांत का इनपुट बहुपदों का परिणाम है ।

यू-परिणामस्वरूप

मैकाले का परिणामी, बहुपद समीकरणों की प्रणालियों को समाधान करने के लिए, मैकाले द्वारा "यू-परिणाम" नामक एक विधि प्रदान करता है।

दिया गया n − 1 सजातीय बहुपद कोटियों का में n अनिश्चित मैदान के ऊपर k, उनका 'यू'-परिणाम का परिणाम है n बहुआयामी पद जहाँ

सामान्य रेखीय रूप है जिसके गुणांक नए अनिश्चित हैं संकेत पद्धति या इन सामान्य गुणांकों के लिए पारंपरिक है, और यू-परिणामी शब्द का मूल है।

यू-परिणामी में सजातीय बहुपद है यह शून्य है यदि और केवल यदि सामान्य शून्य बीजगणितीय विविधता के सकारात्मक आयाम का प्रक्षेपी बीजगणितीय सेट बनाएं (अर्थात, बीजगणितीय रूप से बंद विस्तार पर असीम रूप से कई प्रक्षेपी शून्य हैं k). यदि U-परिणामी शून्य नहीं है, तो इसकी कोटि बेज़ाउट प्रमेय है

U-परिणामस्वरूप k रैखिक रूपों के उत्पाद में बीजगणितीय रूप से बंद विस्तार पर गुणनखण्ड करता है। यदि ऐसा रैखिक कारक है, तब के सामान्य शून्य के सजातीय निर्देशांक हैं इसके अतिरिक्त, प्रत्येक सामान्य शून्य इन रैखिक कारकों में से से प्राप्त किया जा सकता है, और कारक के रूप में बहुलता, इस शून्य पर प्रतिच्छेदन बहुलता के बराबर है। दूसरे शब्दों में, यू-परिणामस्वरूप बेज़ाउट प्रमेय का पूर्णतः स्पष्ट संस्करण प्रदान करता है।

अधिक बहुपदों और अभिकलन का विस्तार

मैकाले द्वारा परिभाषित यू-परिणाम को समीकरणों की प्रणाली में सजातीय बहुपदों की संख्या की आवश्यकता होती है , जहाँ अनिश्चित की संख्या है। 1981 में, डैनियल लाजार्ड ने इस धारणा को उस स्थितियों तक बढ़ाया जहां बहुपदों की संख्या भिन्न हो सकती है, और परिणामी गणना विशेष गॉसियन उन्मूलन प्रक्रिया के माध्यम से प्रतीकात्मक निर्धारक संगणना के बाद की जा सकती है।

मान लीजिये सजातीय बहुपद हो कोटियों का मैदान के ऊपर k सामान्यता के हानि के बिना, कोई ऐसा मान सकता है सेटिंग के लिए i > k, मैकाले बाध्य है

मान लीजिये नए अनिश्चित बनें और परिभाषित करें इस स्थितियों में, मैकॉले आव्यूह को एकपदी्स के आधार पर आव्यूह के रूप में परिभाषित किया गया है रैखिक मानचित्र का

जहाँ, प्रत्येक के लिए i, शून्य और कोटि के सजातीय बहुपदों से मिलकर रैखिक स्थान पर चलता है .

गाऊसी विलोपन के प्रकार द्वारा मैकाले आव्यूह को कम करने पर, रैखिक रूपों का वर्ग आव्यूह प्राप्त होता है इस आव्यूह का निर्धारक U- परिणामी है। मूल यू-परिणाम के साथ, यह शून्य है यदि और केवल यदि असीमित रूप से कई आम प्रोजेक्टिव शून्य हैं (अर्थात् प्रोजेक्टिव बीजगणितीय सेट द्वारा परिभाषित किया गया है के बीजगणितीय समापन पर अपरिमित रूप से k कई बिंदु हैं). फिर से मूल यू-परिणाम के साथ, जब यह यू-परिणाम शून्य नहीं होता है, तो यह किसी भी बीजगणितीय रूप से बंद विस्तार पर रैखिक कारकों k में कारक होता है। इन रैखिक कारकों के गुणांक सामान्य शून्य के सजातीय निर्देशांक हैं और सामान्य शून्य की बहुलता संगत रैखिक कारक की बहुलता के बराबर होती है।

मैकाले आव्यूह की पंक्तियों की संख्या से कम है जहाँ e ~ 2.7182 सामान्य ई (गणितीय स्थिरांक) है, और d की कोटि का अंकगणितीय माध्य है यह इस प्रकार है कि प्रोजेक्टिव शून्य की सीमित संख्या के साथ बहुपद समीकरणों की प्रणाली के सभी समाधान समय जटिलता में निर्धारित किए जा सकते हैं चूंकि यह सीमा बड़ी है, यह निम्नलिखित अर्थों में लगभग इष्टतम है: यदि सभी इनपुट कोटि समान हैं, तो प्रक्रिया की समय जटिलता समाधान की अपेक्षित संख्या (बेज़ाउट प्रमेय) में बहुपद है। यह गणना व्यावहारिक रूप से व्यवहार्य हो सकती है जब n, k और d बड़े नहीं हैं।

यह भी देखें

  • उन्मूलन सिद्धांत
  • सब्रेसल्टेंट
  • अरैखिक बीजगणित

टिप्पणियाँ

  1. Salmon 1885, lesson VIII, p. 66.
  2. Macaulay 1902.
  3. Cox, David; Little, John; O'Shea, Donal (2005), Using Algebraic Geometry, Springer Science+Business Media, ISBN 978-0387207339, Chapter 3. Resultants


संदर्भ


बाहरी संबंध