फॉस्फेट रूपांतरण कोटिंग

From Vigyanwiki
Revision as of 21:23, 13 March 2023 by alpha>Indicwiki (Created page with "{{Short description|Technique of protection of steel surfaces against corrosion}} {{About|general metal surface treatment|the fossilization process|phosphatic fossilization}}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

फास्फेट रूपांतरण कोटिंग इस्पात के हिस्सों पर लागू एक रासायनिक उपचार है जो संक्षारण प्रतिरोध, स्नेहन, या बाद के कोटिंग्स या पेंटिंग के लिए नींव के रूप में लौह, जस्ता, या मैंगनीज फॉस्फेट की पतली पालन परत बनाता है।[1][2][3]यह रूपांतरण कोटिंग के सबसे आम प्रकारों में से एक है। प्रक्रिया को फॉस्फेट कोटिंग, फॉस्फेटाइजेशन भी कहा जाता है,[4]फॉस्फेटाइजिंग, या फॉस्फेटिंग। यह व्यापार नाम parkerizing द्वारा भी जाना जाता है, खासकर जब आग्नेयास्त्रों और अन्य सैन्य उपकरणों पर लागू होता है।

फॉस्फेट कोटिंग आमतौर पर स्टील के हिस्से पर फॉस्फोरिक एसिड का पतला घोल लगाने से प्राप्त होता है, संभवतः घुलनशील लोहा, जस्ता और / या मैंगनीज लवण के साथ। समाधान स्पंजिंग, स्प्रेइंग या विसर्जन द्वारा लागू किया जा सकता है।[5]फॉस्फेट रूपांतरण कोटिंग्स का उपयोग अल्युमीनियम, जस्ता, कैडमियम, चांदी और विश्वास करना पर भी किया जा सकता है।[6][7]


प्रकार

फॉस्फेट कोटिंग्स के मुख्य प्रकार मैंगनीज, लोहा और जस्ता हैं।[8]

  • मैंगनीज (II) फॉस्फेट कोटिंग्स संक्षारण प्रतिरोध और चिकनाई दोनों के लिए उपयोग की जाती हैं और केवल विसर्जन द्वारा लागू होती हैं।
  • आयरन फास्फेट कोटिंग्स को आमतौर पर आगे की कोटिंग्स या पेंटिंग के लिए एक आधार के रूप में उपयोग किया जाता है और इसे विसर्जन या छिड़काव द्वारा लगाया जाता है।
  • जिंक फास्फेट कोटिंग्स का उपयोग संक्षारण प्रतिरोध के लिए, लुब्रिकेंट-होल्डिंग लेयर के रूप में, और पेंट/कोटिंग बेस के रूप में किया जाता है और इसे विसर्जन या छिड़काव द्वारा भी लगाया जा सकता है। उन्हें गैल्वनीकरण पर भी लागू किया जा सकता है।[1][5]


प्रक्रिया

प्रक्रिया मध्यम या उच्च पीएच पर फॉस्फेट की कम घुलनशीलता का लाभ उठाती है। स्नान फॉस्फोरिक एसिड का एक समाधान है (H3PO4), वांछित लोहा, जस्ता या मैंगनीज केशन और अन्य योजक युक्त।[9]अम्ल लौह धातु के साथ अभिक्रिया करके हाइड्रोजन और लौह धनायन बनाता है:

फ़े + 2 H
3
O+
Fe2+
+ H
2
+ 2 H
2
O

प्रतिक्रिया खपत करने वाले प्रोटॉन सतह के तत्काल आसपास के क्षेत्र में समाधान के पीएच को बढ़ाते हैं, जब तक कि अंततः फॉस्फेट अघुलनशील नहीं हो जाते हैं और इसके ऊपर जमा हो जाते हैं। एसिड और धातु की प्रतिक्रिया भी स्थानीय स्तर पर आयरन फॉस्फेट बनाती है जो जमा भी हो सकती है। जिंक फॉस्फेट या मैंगनीज (II) फॉस्फेट जमा करते समय अतिरिक्त आयरन फॉस्फेट एक अवांछित अशुद्धता हो सकती है।

स्नान में अक्सर ऑक्सीडाइज़र शामिल होता है, जैसे सोडियम नाइट्राइट (NaNO2), हाइड्रोजन गैस का उपभोग करने के लिए (H
2
) - जो अन्यथा सतह पर छोटे बुलबुले की एक परत बना देगा, प्रतिक्रिया को धीमा कर देगा।[9]

मुख्य फॉस्फेटिंग कदम एक सक्रियण स्नान से पहले हो सकता है जो सतह पर टाइटेनियम यौगिकों के छोटे कण बनाता है।[9]

फॉस्फेट कोटिंग का प्रदर्शन इसकी क्रिस्टल संरचना के साथ-साथ इसकी मोटाई पर निर्भर करता है। कम सरंध्रता वाली सघन माइक्रोक्रिस्टलाइन संरचना आमतौर पर संक्षारण प्रतिरोध या बाद की पेंटिंग के लिए सबसे अच्छी होती है। पहनने के प्रतिरोध के लिए तेल के साथ गर्भवती एक मोटे अनाज की संरचना सबसे अच्छी हो सकती है। इन कारकों को स्नान की एकाग्रता, संरचना, तापमान और समय को बदलकर नियंत्रित किया जा सकता है।[5]


पार्कराइजिंग

एक ज़िंक-पार्कराइज़्ड सिविलियन .45 ACP स्प्रिंगफ़ील्ड आर्मरी, इंक. M1911-A1 पिस्टल

पार्कराइजिंग स्टील की सतह को जंग से बचाने और रासायनिक फॉस्फेट रूपांतरण कोटिंग के आवेदन के माध्यम से पहनने के प्रतिरोध को बढ़ाने की एक विधि है। पार्कराइजिंग को आमतौर पर एक बेहतर जस्ता या मैंगनीज फॉस्फेटिंग प्रक्रिया माना जाता है, न कि एक बेहतर आयरन फॉस्फेटिंग प्रक्रिया होने के लिए, हालांकि कुछ शब्द 'पार्कराइजिंग' का उपयोग फॉस्फेटिंग (या फॉस्फेटाइजिंग) कोटिंग्स को लागू करने के लिए एक सामान्य शब्द के रूप में करते हैं जिसमें शामिल है आयरन फास्फेटिंग प्रक्रिया। बॉन्डराइजिंग, फॉस्फेटिंग और फॉस्फेटाइजिंग पार्कराइजिंग प्रक्रिया से जुड़े अन्य शब्द हैं।[citation needed] रॉट आयरन और स्टील के संदर्भ में इसे अचार बनाना (धातु)धातु) के रूप में भी जाना जाता है।[10]

पार्कराइजिंग आमतौर पर आग्नेयास्त्रों पर ब्लूइंग (स्टील) के अधिक प्रभावी विकल्प के रूप में उपयोग किया जाता है, जो पहले विकसित रासायनिक रूपांतरण कोटिंग है। अधूरे धातु के पुर्जों को क्षरण से बचाने के लिए ऑटोमोबाइल पर भी इसका बड़े पैमाने पर उपयोग किया जाता है।

पार्कराइजिंग प्रक्रिया का उपयोग गैर-लौह धातुओं जैसे एल्यूमीनियम, पीतल या तांबे पर नहीं किया जा सकता है। इसी तरह यह उन स्टील्स पर लागू नहीं किया जा सकता है जिनमें बड़ी मात्रा में निकल या स्टेनलेस स्टील होता है। अन्य धातुओं की सुरक्षा के लिए निष्क्रियता (रसायन विज्ञान) का उपयोग किया जा सकता है।

प्रारंभिक इतिहास

प्रक्रिया का विकास इंग्लैंड में शुरू हुआ और संयुक्त राज्य अमेरिका में पार्कर परिवार द्वारा जारी रखा गया। Parkerizing, Parkerize, और Parkerized शब्द सभी तकनीकी रूप से सँभालना के पंजीकृत यू.एस. ट्रेडमार्क हैं, हालांकि कई वर्षों के लिए शब्दावली काफी हद तक सामान्य ट्रेडमार्क में पारित हो गई है। द्वितीय विश्व युद्ध के दौरान संयुक्त राज्य अमेरिका की सेना के लिए आग्नेयास्त्रों के निर्माण में इस प्रक्रिया का पहली बार बड़े पैमाने पर उपयोग किया गया था।[11] फॉस्फेटिंग प्रक्रियाओं पर सबसे पहला काम ब्रिटिश आविष्कारक विलियम अलेक्जेंडर रॉस, ब्रिटिश पेटेंट 3119, 1869 में और थॉमस वाट्स कॉस्लेट, ब्रिटिश पेटेंट 8667, 1906 में विकसित किया गया था। बर्मिंघम, इंग्लैंड के कॉस्लेट ने बाद में इसी के आधार पर एक पेटेंट दायर किया। 1907 में अमेरिका में प्रक्रिया, जो प्रदान की गई थी {{US patent|870937}1907 में। यह अनिवार्य रूप से फॉस्फोरिक एसिड का उपयोग करके एक आयरन फॉस्फेटिंग प्रक्रिया प्रदान करता है।

इस शुरुआती ब्रिटिश आयरन फॉस्फेटिंग प्रक्रिया पर आधारित मैंगनीज फॉस्फेटिंग के लिए एक बेहतर पेटेंट आवेदन 1912 में अमेरिका में दायर किया गया था, और 1913 में फ्रैंक रूपर्ट ग्रानविले रिचर्ड्स को जारी किया गया था। U.S. Patent 1,069,903.

क्लार्क डब्ल्यू पार्कर ने कॉसलेट और रिचर्ड्स के यू.एस. पेटेंट के अधिकार हासिल किए, और परिवार की रसोई में इन और अन्य जंग प्रतिरोधी योगों के साथ प्रयोग किया। अंतिम परिणाम यह था कि क्लार्क डब्ल्यू पार्कर ने अपने बेटे वायमन सी पार्कर के साथ मिलकर काम करते हुए 1915 में अमेरिका की पार्कर रस्ट-प्रूफ फॉस्फेटिंग कंपनी की स्थापना की।

अमेरिका की पार्कर रस्ट-प्रूफ फॉस्फेटिंग कंपनी के आरडी कोलक्हौं ने फिर 1919 में एक और बेहतर फॉस्फेटिंग पेटेंट आवेदन दायर किया। यह पेटेंट 1919 में जारी किया गया था U.S. Patent 1,311,319, एक बेहतर मैंगनीज फॉस्फेटिंग (पार्कराइजिंग) तकनीक के लिए।

इसी तरह, पार्कर रस्ट-प्रूफ कंपनी के बेकर और डिंगमैन ने 1928 में एक बेहतर मैंगनीज फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया पेटेंट दायर किया जिसने प्रसंस्करण समय को कम कर दिया 13 की सटीक नियंत्रित सीमा में तापमान के समाधान को गर्म करने के माध्यम से आवश्यक मूल समय 500 to 550 °F (260 to 288 °C). यह पेटेंट के रूप में जारी किया गया था U.S. Patent 1,761,186 1930 में।

मैंगनीज फॉस्फेटिंग, इन प्रक्रिया सुधारों के साथ भी, अभी भी महंगे और कठिन-से-प्राप्त मैंगनीज यौगिकों के उपयोग की आवश्यकता है। इसके बाद, मैंगनीज फॉस्फेटिंग के स्थान पर जिंक फॉस्फेटिंग का उपयोग करके कम खर्च पर आसानी से प्राप्त होने वाले यौगिकों का उपयोग करने के लिए पार्कर कंपनी द्वारा एक वैकल्पिक तकनीक विकसित की गई थी। इस जिंक फास्फेटिंग प्रक्रिया के लिए पेटेंट (रणनीतिक सामग्रियों का उपयोग जो युद्ध के दौरान अमेरिका में उपलब्ध रहेगा) को 1938 में अमेरिकन केमिकल पेंट कंपनी के आविष्कारक रोमिग को प्रदान किया गया था। U.S. Patent 2,132,883, द्वितीय विश्व युद्ध के दौरान हुई मैंगनीज यौगिकों तक आसान पहुंच के नुकसान से ठीक पहले।

बेकर और डिंगमैन द्वारा खोजी गई बेहतर मैंगनीज फॉस्फेटिंग प्रक्रिया में सुधार के अनुरूप कुछ हद तक, एक बेहतर जिंक फॉस्फेटिंग प्रक्रिया के लिए भी इसी तरह की बेहतर विधि पाई गई। इस सुधार की खोज पार्कर रस्ट प्रूफ कंपनी के डार्सी ने की थी, जिन्होंने फरवरी 1941 में एक पेटेंट दायर किया था, जिसे अगस्त 1942 में प्रदान किया गया था। U.S. Patent 2,293,716, जो कि जिंक फास्फेटाइजिंग (पार्कराइजिंग) प्रक्रिया में और सुधार हुआ। उन्होंने पाया कि तांबे को जोड़ने से अम्लता की आवश्यकता कम हो गई थी, और पहले से इस्तेमाल किए गए नाइट्रेट्स में क्लोरेट को जोड़ने से प्रक्रिया को बहुत कम तापमान पर चलाने की अनुमति मिल जाएगी। 115 to 130 °F (46 to 54 °C), प्रक्रिया को आगे चलाने की लागत को कम करना। इन प्रक्रिया सुधारों के साथ, अंतिम परिणाम यह था कि एक निम्न-तापमान (ऊर्जा-कुशल) जिंक फॉस्फेटिंग (पार्कराइजिंग) प्रक्रिया, रणनीतिक सामग्रियों का उपयोग करके, जिसके लिए संयुक्त राज्य अमेरिका के पास तैयार पहुंच थी, द्वितीय विश्व युद्ध के दौरान उपयोग की जाने वाली सबसे आम फॉस्फेटिंग प्रक्रिया बन गई। अमेरिकी युद्ध सामग्री जैसे आग्नेयास्त्रों और विमानों को जंग और क्षरण से बचाएं।

बाद के घटनाक्रम

ब्लैक पार्कराइज़्ड टॉपकोट के साथ Glock पिस्टल

Glock Ges.m.b.H., एक ऑस्ट्रियाई आग्नेयास्त्र निर्माता, अपने द्वारा निर्मित पिस्तौल की पिस्टल स्लाइड की सुरक्षा के लिए टेनिफर प्रक्रिया के लिए एक टॉपकोट के रूप में एक ब्लैक पार्कराइज़िंग प्रक्रिया का उपयोग करता है। टेनिफ़र प्रक्रिया को लागू करने के बाद, एक काले रंग की पार्कराइज़्ड फ़िनिश लागू की जाती है और स्लाइड को संरक्षित किया जाता है, भले ही पार्कराइज़्ड फ़िनिश खराब हो। इस तरह से उपयोग किया जाता है, पार्कराइजिंग इस प्रकार एक सुरक्षात्मक और सजावटी परिष्करण तकनीक बन रही है जिसका उपयोग धातु संरक्षण की अन्य अंतर्निहित बेहतर तकनीकों पर किया जाता है।

पारंपरिक लौह फॉस्फेट, जिंक फॉस्फेट, और मैंगनीज फॉस्फेट रासायनिक रूपांतरण कोटिंग्स, पार्कराइजिंग विविधताओं सहित, सभी की आलोचना की गई है[12] हाल के वर्षों में सतही जल प्रणालियों में फॉस्फेट को शामिल करने के लिए, शैवाल (eutrophication ) के तेजी से विकास को प्रोत्साहित करने के लिए। नतीजतन, हाल के वर्षों में, पारंपरिक फॉस्फेट कोटिंग्स के लिए नई, उभरती हुई प्रौद्योगिकी विकल्पों को पार्कराइजिंग सहित सभी फॉस्फेटिंग कोटिंग्स को बदलने के लिए सीमित उपयोग देखना शुरू हो गया है। इन नए रूपांतरण कोटिंग्स में से अधिकांश फ़्लोरोज़िरकोनियम-आधारित हैं। 2005 में पेश किए गए इन फ्लोरोज़िरकोनियम-आधारित रूपांतरण कोटिंग्स में सबसे लोकप्रिय, संक्रमण धातु वैनेडियम शामिल है। इस नए, अधिक पर्यावरण के अनुकूल कोटिंग को वनाडेट रूपांतरण कोटिंग कहा जाता है। वनाडेट कोटिंग्स के अलावा, arsenate कोटिंग्स सैद्धांतिक रूप से मनुष्यों और जानवरों के स्वास्थ्य के लिए खतरा होने के जोखिम पर समान सुरक्षा प्रदान कर सकती हैं। यह देखा जाना बाकी है कि क्या ये या अन्य नए रासायनिक रूपांतरण कोटिंग्स अंततः पारंपरिक फॉस्फेटिंग और पार्कराइजिंग को बदल देंगे।

स्टोवटॉप किचन पार्कराइज़िंग के लिए इसी तरह के कई व्यंजन कई बार बंदूक प्रकाशनों में प्रसारित होते हैं, और पार्कराइज़िंग किट प्रमुख बंदूक-पुर्ज़ों के वितरकों जैसे कि ब्राउनल्स द्वारा बेचे जाते हैं।

उपयोग करता है

पेंटिंग प्राइमर

फॉस्फेट कोटिंग्स का उपयोग आमतौर पर आगे की कोटिंग और/या पेंटिंग के लिए एक प्रभावी सतह तैयारी के रूप में किया जाता है, जो उत्कृष्ट आसंजन और विद्युत अलगाव प्रदान करता है।[5]


संक्षारण प्रतिरोध

फॉस्फेट कोटिंग्स का उपयोग अक्सर स्टील के पुर्जों को जंग लगने और अन्य प्रकार के क्षरण से बचाने के लिए किया जाता है। हालांकि, वे कुछ झरझरा हैं, इसलिए इस उपयोग के लिए तेल, पेंट या किसी अन्य सीलिंग पदार्थ के साथ कोटिंग को संसेचन की आवश्यकता होती है। परिणाम एक कसकर पालन करने वाली ढांकता हुआ (विद्युत रूप से इन्सुलेट) परत है जो इलेक्ट्रोकैमिस्ट्री # जंग और अंडर-पेंट जंग से भाग की रक्षा कर सकती है।[5]


प्रतिरोध पहनें

जस्ता और मैंगनीज कोटिंग्स पहनने के अधीन घटकों में तोड़ने में मदद के लिए उपयोग की जाती हैं[1]और पित्त को रोकने में मदद करें।[5]


स्नेहन

जबकि जिंक फॉस्फेट कोटिंग अपने आप में कुछ अपघर्षक है, इसे सोडियम स्टीयरेट (साबुन) के साथ उपचार द्वारा ठंड बनाने के संचालन के लिए स्नेहक परत में बदल दिया जा सकता है। साबुन फॉस्फेट क्रिस्टल के साथ प्रतिक्रिया करता है जो एक बहुत पतली अघुलनशील और हाइड्रोफोबिसिटी जिंक स्टीयरेट परत बनाता है, जो भाग के अत्यधिक विरूपण के तहत भी अप्राप्य सोडियम स्टीयरेट को बनाए रखने में मदद करता है, जैसे कि तार ड्राइंग में।[1][13]


यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 "Zinc and Manganese Phosphates". www.parkerhq.com. Parker Rust-Proof of Cleveland. Retrieved 2014-09-30.
  2. "Phosphating ; Advanced Corrosion Protection". surfacepretreatment.com. Archived from the original on 2011-07-16.
  3. T.S.N. Sankara Narayanan (2005): "[Surface pretreatment by phosphate conversion coatings - A review Surface pretreatment by phosphate conversion coatings - A review]" Rev.Adv.Mater.Sci, volume 9, pages 130-177.
  4. W. Meisel (1986): "Studies of the Phosphatization of Steel and its Corrosion Products". Chapter of Industrial Applications of the Mössbauer Effect. doi:10.1007/978-1-4613-1827-9_15
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Jim Dufour (2006): An Introduction to Metallurgy, 5th edition, pages IX 11–12.
  6. Joseph Edwards (1997): Coating and Surface Treatment Systems for Metals. Finishing Publications Ltd. ISBN 0-904477-16-9
  7. J. Skar, M. Walter, and D. Albright (1997): "Non-Chromate Conversion Coatings for Magnesium Die Castings". ', https://www.sae.org/publications/technical-papers/content/970324/ DOI: https://doi.org/10.4271/970324 Citation: Skar, J., Walter, M., and Albright, D., "," SAE International, Technical Paper 970324 doi:10.4271/970324
  8. "Phosphate Coating: Zinc, Iron or Manganese Phosphate". United Plating, Inc. Archived from the original on 2011-07-17.
  9. 9.0 9.1 9.2 Stauffer, J.L (1993). Finishing Systems Design and Implementation: A Guide for Product Parameters, Coatings, Process, and Equipment. SME. pp. 132–134. ISBN 9780872634343.
  10. Pheiffer, J. (18 July 1933). "फॉस्फोरिक एसिड के माध्यम से गढ़ा लोहा और इस्पात का अचार बनाना". 1st World Petroleum Congress, London, UK, July 1933. (WPC-1122).
  11. "सिर्फ तथ्यों". Calvan.com. Retrieved April 12, 2014.
  12. U.S. Environmental Protection Agency Recommendations
  13. "Wire Drawing Phosphate". Archived from the original on February 28, 2009. Retrieved January 3, 2009.


स्रोत

  • MIL-HDBK-205, फेरस मेटल्स की फॉस्फेट और ब्लैक ऑक्साइड कोटिंग: फॉस्फेट और ब्लैक ऑक्साइड (ब्लिंग) कोटिंग्स पर एक मानक अवलोकन
  • Budinski, Kenneth G. (1988), Surface Engineering for Wear Resistance, Englewood Cliffs, New Jersey: Prentice Hall, p. 48
  • Brimi, Marjorie A. (1965), Electrofinishing, New York, New York: American Elsevier Publishing Company, Inc., pp. 62–63.

बाहरी संबंध

  • Henkel Surface Technologies—Current owner of Parco-Lubrite (a manganese phosphating process) and other Parkerizing rust-prevention coatings. (Parco is a registered trademark of Henkel Surface Technologies.)
  • Coral Chemical Company—Current owner of Coral Eco Treat (vanadium conversion coating process)
  • Parker Rust-Proof of Cleveland—Last remaining of the four original job shop licensees of Parker Chemical, currently offers phosphating services