जल का वाष्प दाब
T, °C | T, °F | P, kPa | P, torr | P, atm |
---|---|---|---|---|
0 | 32 | 0.6113 | 4.5851 | 0.0060 |
5 | 41 | 0.8726 | 6.5450 | 0.0086 |
10 | 50 | 1.2281 | 9.2115 | 0.0121 |
15 | 59 | 1.7056 | 12.7931 | 0.0168 |
20 | 68 | 2.3388 | 17.5424 | 0.0231 |
25 | 77 | 3.1690 | 23.7695 | 0.0313 |
30 | 86 | 4.2455 | 31.8439 | 0.0419 |
35 | 95 | 5.6267 | 42.2037 | 0.0555 |
40 | 104 | 7.3814 | 55.3651 | 0.0728 |
45 | 113 | 9.5898 | 71.9294 | 0.0946 |
50 | 122 | 12.3440 | 92.5876 | 0.1218 |
55 | 131 | 15.7520 | 118.1497 | 0.1555 |
60 | 140 | 19.9320 | 149.5023 | 0.1967 |
65 | 149 | 25.0220 | 187.6804 | 0.2469 |
70 | 158 | 31.1760 | 233.8392 | 0.3077 |
75 | 167 | 38.5630 | 289.2463 | 0.3806 |
80 | 176 | 47.3730 | 355.3267 | 0.4675 |
85 | 185 | 57.8150 | 433.6482 | 0.5706 |
90 | 194 | 70.1170 | 525.9208 | 0.6920 |
95 | 203 | 84.5290 | 634.0196 | 0.8342 |
100 | 212 | 101.3200 | 759.9625 | 1.0000 |
जल का वाष्प दाब, जलवाष्प के अणुओं द्वारा गैसीय रूप में (चाहे शुद्ध हो या वायु जैसी अन्य गैसों के मिश्रण में) डाला गया दाब है। संतृप्ति वाष्प दबाव वह दबाव है जिस पर जल वाष्प संतृप्त वाष्प होता है। वाष्प के दबाव से अधिक दबावों पर, पानी के गुण संघनित होंगे, जबकि कम दबावों पर यह वाष्पित हो जाएगा या उर्ध्वपातन (चरण संक्रमण)। बढ़ते तापमान के साथ पानी का संतृप्त वाष्प दबाव बढ़ता है और क्लॉसियस-क्लैप्रोन संबंध के साथ निर्धारित किया जा सकता है। पानी का क्वथनांक वह तापमान होता है जिस पर संतृप्त वाष्प का दबाव परिवेश के दबाव के बराबर होता है।
पानी के (संतृप्ति) वाष्प दबाव की गणना आमतौर पर मौसम विज्ञान में उपयोग की जाती है। तापमान-वाष्प दबाव संबंध पानी के क्वथनांक और दबाव के बीच के संबंध को उलटा बताता है। यह उच्च ऊंचाई पर प्रेशर कुकिंग और कुकिंग दोनों के लिए प्रासंगिक है। उच्च ऊंचाई पर सांस लेने और गुहिकायन की व्याख्या करने में वाष्प दबाव की समझ भी प्रासंगिक है।
सन्निकटन सूत्र
पानी और बर्फ पर संतृप्त वाष्प दबाव की गणना के लिए कई प्रकाशित अनुमान हैं। इनमें से कुछ हैं (सटीकता बढ़ाने के अनुमानित क्रम में):
Name | Formula | Description | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"Eq. 1" (August equation) | P is the vapour pressure in mmHg and T is the temperature in kelvins. Constants are unattributed. | ||||||||||||||||
The Antoine equation | T is in degrees Celsius (°C) and the vapour pressure P is in mmHg. The (unattributed) constants are given as
| ||||||||||||||||
अगस्त-रोशे-मैग्नस (या मैग्नस-टेटेंस या मैग्नस) समीकरण | तापमानT डिग्री सेल्सियस और वाष्प के दबाव में हैP किलोपास्कल (केपीए) में है। यहाँ दिए गए गुणांक Alduchov और Eskridge (1996) में समीकरण 21 के अनुरूप हैं।[2] क्लॉसियस-क्लैपेरॉन संबंध#मौसम विज्ञान और जलवायु विज्ञान भी देखें। मौसम विज्ञान और जलवायु विज्ञान में उपयोग किए जाने वाले क्लॉसियस-क्लैपेरॉन अनुमानों की चर्चा। | ||||||||||||||||
T डिग्री सेल्सियस में है औरP केपीए में है | |||||||||||||||||
द आर्डेन बक समीकरण। | T डिग्री सेल्सियस में है और P केपीए में है। | ||||||||||||||||
गोफ-ग्राच (1946) समीकरण।[3] | (लेख देखें; बहुत लंबा) |
विभिन्न योगों की सटीकता
यहाँ इन अलग-अलग स्पष्ट योगों की सटीकता की तुलना है, केपीए में तरल पानी के लिए संतृप्ति वाष्प के दबावों को दिखाते हुए, छह तापमानों पर उनकी प्रतिशत त्रुटि के साथ लिड (2005) के तालिका मूल्यों से गणना की जाती है:
T (°C) P (Lide Table) P (Eq 1) P (Antoine) P (Magnus) P (Tetens) P (Buck) P (Goff-Gratch) 0 0.6113 0.6593 (+7.85%) 0.6056 (-0.93%) 0.6109 (-0.06%) 0.6108 (-0.09%) 0.6112 (-0.01%) 0.6089 (-0.40%) 20 2.3388 2.3755 (+1.57%) 2.3296 (-0.39%) 2.3334 (-0.23%) 2.3382 (+0.05%) 2.3383 (-0.02%) 2.3355 (-0.14%) 35 5.6267 5.5696 (-1.01%) 5.6090 (-0.31%) 5.6176 (-0.16%) 5.6225 (+0.04%) 5.6268 (+0.00%) 5.6221 (-0.08%) 50 12.344 12.065 (-2.26%) 12.306 (-0.31%) 12.361 (+0.13%) 12.336 (+0.08%) 12.349 (+0.04%) 12.338 (-0.05%) 75 38.563 37.738 (-2.14%) 38.463 (-0.26%) 39.000 (+1.13%) 38.646 (+0.40%) 38.595 (+0.08%) 38.555 (-0.02%) 100 101.32 101.31 (-0.01%) 101.34 (+0.02%) 104.077 (+2.72%) 102.21 (+1.10%) 101.31 (-0.01%) 101.32 (0.00%)
एल्डुचोव और एस्क्रिज (1996) में तापमान मापन में अशुद्धि की सटीकता और विचारों की अधिक विस्तृत चर्चा प्रस्तुत की गई है। यहां विश्लेषण से पता चलता है कि सरल गैर-जिम्मेदार सूत्र और एंटोनी समीकरण 100 डिग्री सेल्सियस पर यथोचित रूप से सटीक हैं, लेकिन ठंड से ऊपर कम तापमान के लिए काफी खराब हैं। टेटेंस समीकरण 0 से 50 °C की सीमा पर अधिक सटीक है और 75 °C पर बहुत प्रतिस्पर्धी है, लेकिन एंटोनी 75 °C और उससे अधिक पर बेहतर है। बिना एट्रिब्यूट किए गए फ़ॉर्मूले में लगभग 26 °C पर शून्य त्रुटि होनी चाहिए, लेकिन एक बहुत ही संकीर्ण सीमा के बाहर बहुत कम सटीकता है। टेटेंस के समीकरण आम तौर पर अधिक सटीक होते हैं और रोजमर्रा के तापमान (जैसे मौसम विज्ञान में) पर उपयोग के लिए यकीनन सरल होते हैं। उम्मीद के मुताबिक, आर्डेन बक समीकरण|बक का समीकरण T > 0 °C टेटेन्स की तुलना में उल्लेखनीय रूप से अधिक सटीक है, और इसकी श्रेष्ठता 50 °C से ऊपर स्पष्ट रूप से बढ़ जाती है, हालांकि इसका उपयोग करना अधिक जटिल है। बक समीकरण अधिक जटिल गोफ-ग्राच समीकरण से भी बेहतर है। व्यावहारिक मौसम विज्ञान के लिए आवश्यक सीमा पर गोफ-ग्राच समीकरण।
संख्यात्मक सन्निकटन
गंभीर संगणना के लिए, लोव (1977)[4] ठंड से ऊपर और नीचे के तापमान के लिए सटीकता के विभिन्न स्तरों के साथ समीकरणों के दो जोड़े विकसित किए। वे सभी बहुत सटीक हैं (क्लॉज़ियस-क्लैपेरॉन संबंध | क्लॉज़ियस-क्लैपेरॉन और गोफ़-ग्रैच समीकरण | गोफ़-ग्रैच की तुलना में) लेकिन बहुत कुशल संगणना के लिए नेस्टेड बहुपदों का उपयोग करते हैं। हालांकि, संभवतः बेहतर फॉर्मूलेशन की अधिक हालिया समीक्षाएं हैं, विशेष रूप से वेक्स्लर (1976, 1977),[5][6] फ्लैटौ एट अल द्वारा रिपोर्ट किया गया। (1992)।[7] इन फ़ार्मुलों के आधुनिक उपयोग के उदाहरण नासा के जीआईएसएस मॉडल-ई और सेनफेल्ड और पंडिस (2006) में अतिरिक्त रूप से पाए जा सकते हैं। पूर्व एक अत्यंत सरल एंटोनी समीकरण है, जबकि बाद वाला एक बहुपद है।[8]
तापमान पर ग्राफिकल दबाव निर्भरता
यह भी देखें
संदर्भ
- ↑ Lide, David R., ed. (2004). CRC Handbook of Chemistry and Physics (85th ed.). CRC Press. pp. 6–8. ISBN 978-0-8493-0485-9.
- ↑ Alduchov, O.A.; Eskridge, R.E. (1996). "बेहतर मैग्नस फॉर्म सन्निकटन संतृप्ति वाष्प दबाव". Journal of Applied Meteorology. 35 (4): 601–9. Bibcode:1996JApMe..35..601A. doi:10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2.
- ↑ Goff, J.A., and Gratch, S. 1946. Low-pressure properties of water from −160 to 212 °F. In Transactions of the American Society of Heating and Ventilating Engineers, pp 95–122, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, 1946.
- ↑ Lowe, P.R. (1977). "संतृप्ति वाष्प दबाव की गणना के लिए एक अनुमानित बहुपद". Journal of Applied Meteorology. 16 (1): 100–4. Bibcode:1977JApMe..16..100L. doi:10.1175/1520-0450(1977)016<0100:AAPFTC>2.0.CO;2.
- ↑ Wexler, A. (1976). "Vapor pressure formulation for water in range 0 to 100°C. A revision". Journal of Research of the National Bureau of Standards Section A. 80A (5–6): 775–785. doi:10.6028/jres.080a.071. PMC 5312760. PMID 32196299.
- ↑ Wexler, A. (1977). "बर्फ के लिए वाष्प दबाव सूत्रीकरण". Journal of Research of the National Bureau of Standards Section A. 81A (1): 5–20. doi:10.6028/jres.081a.003.
- ↑ Flatau, P.J.; Walko, R.L.; Cotton, W.R. (1992). "बहुपद संतृप्ति वाष्प दबाव के लिए फिट बैठता है". Journal of Applied Meteorology. 31 (12): 1507–13. Bibcode:1992JApMe..31.1507F. doi:10.1175/1520-0450(1992)031<1507:PFTSVP>2.0.CO;2.
- ↑ Clemenzi, Robert. "जल वाष्प - सूत्र". mc-computing.com.
अग्रिम पठन
- "Thermophysical properties of seawater". Matlab, EES and Excel VBA library routines. MIT. 20 February 2017.
- Garnett, Pat; Anderton, John D; Garnett, Pamela J (1997). Chemistry Laboratory Manual For Senior Secondary School. Longman. ISBN 978-0-582-86764-2.
- Murphy, D.M.; Koop, T. (2005). "Review of the vapour pressures of ice and supercooled water for atmospheric applications". Quarterly Journal of the Royal Meteorological Society. 131 (608): 1539–65. Bibcode:2005QJRMS.131.1539M. doi:10.1256/qj.04.94. S2CID 122365938.
- Speight, James G. (2004). Lange's Handbook of Chemistry (16th ed.). McGraw-Hil. ISBN 978-0071432207.
बाहरी संबंध
- Vömel, Holger (2016). "Saturation vapor pressure formulations". Boulder CO: Earth Observing Laboratory, National Center for Atmospheric Research. Archived from the original on June 23, 2017.
- "Vapor Pressure Calculator". National Weather Service, National Oceanic and Atmospheric Administration.