सुपरकॉन्टिनम
प्रकाशिकी में, सुपरकॉन्टिनम तब निर्मित होता है जब गैर रेखीय प्रक्रियाओं का संग्रह स्पंदित किरण पर एक साथ कार्य करते है ताकि मूल स्पंदित किरण के गंभीर वर्णक्रमीय विस्तार का कारण बन सके, उदाहरण के लिए एक लघु संरचित प्रकाशित तंतु का उपयोग किया जाता है। परिणाम समतल वर्णक्रमीय एक सातत्य है (एक विशिष्ट उदाहरण के लिए चित्र 1 देखें)। इस बात पर कोई सहमति नहीं है कि एक सुपरकॉन्टिनम कितना चौड़ा होता है; हालांकि शोधकर्ताओं ने सुपरकॉन्टिनम के रूप में 60 nm के विस्तार का अनुरोध करते हुए कार्य को प्रकाशित किया है।[1] स्रोत के बैंड विस्तार को परिभाषित करने के लिए आवश्यक वर्णक्रमीय सपाटता पर भी कोई सहमति नहीं है, जिसमें लेखक ने 5dB से 40 dB या अधिक का उपयोग किया है। इसके अतिरिक्त सुपरकॉन्टिनम शब्द को इस सदी तक व्यापक स्वीकृति नहीं मिली, कई लेखकों ने 1970, 1980 और 1990 के दशक के पर्यन्त अपने सातत्य का वर्णन करने के लिए वैकल्पिक वाक्यांशों का उपयोग किया।
पिछले दशक के पर्यन्त, सुपरकॉन्टिनम स्रोतों का विकास एक शोध क्षेत्र के रूप में प्रकट हुआ है।[2] यह व्यापक रुप से नए प्रौद्योगिकी विकास के कारण है, जिसने सुपरकॉन्टिनम को अधिक नियंत्रित और सुलभ उत्पादन की अनुमति दी है। इस नए शोध ने कई नए प्रकाश स्रोतों का निर्माण किया है जो प्रकाशीय सुसंगतता टोमोग्राफी सहित विविध क्षेत्रों में अनुप्रयोगों की खोज कर रहे हैं।[3][4] आवृत्ति मापविज्ञान,[5][6][7] प्रतिदीप्ति आजीवन प्रतिबिंबन,[8] प्रकाशीय संचार,[1][9][10] वाष्प संवेदन[11][12][13] गंभीर प्रयास हैं। इन स्रोतों के अनुप्रयोग ने एक पुनर्भरण पाश बनाया है जिससे सुपरकॉन्टिनम का उपयोग करने वाले वैज्ञानिक अपने विशेष अनुप्रयोगों के अनुरूप उन्नत अनुकूलन योग्य सातत्य की मांग कर रहे हैं। इसने शोधकर्ताओं को इन सातत्यओं का उत्पादन करने और उनके गठन को समझने और भविष्य के विकास में सहायता करने के लिए सिद्धांतों और उपन्यास विधियों को विकसित करने के लिए प्रेरित किया है। फलस्वरूप, 2000 के बाद से इन स्रोतों को विकसित करने में तीव्र प्रगति हुई है। जबकि सुपरकॉन्टिनम युग लंबे समय से तंतु का संरक्षण रही है, हाल के वर्षों में, एकीकृत तरंग निर्देशित्र अत्यधिक व्यापक वर्णक्रम का उत्पादन करने के लिए अवस्था में आ गए हैं, जो अधिक लागत प्रभावी, सघन, सुदृढ़, मापनीय और बड़े पैमाने पर उत्पादन योग्य सुपरकॉन्टिनम स्रोतों के लिए कपाट खोलते हैं।[14][15]
ऐतिहासिक अवलोकन
1960 और 1970 का दशक
1964 में जोन्स और स्टोइचेफ[16] ने प्रकाशीय आवृत्तियों पर तरल पदार्थों में प्रेरित रमन अवशोषण का अध्ययन करने के लिए मेसर द्वारा उत्पन्न एक सातत्य का उपयोग करने की सूचना दी। यह स्टोइचेफ द्वारा प्रारंभिक प्रकाशन में विख्यात किया गया था[17] कि जब मेसर उत्सर्जन तीव्र वर्णक्रमीय रेखा में था, तब सभी रमन उत्सर्जन रेखाएँ तीव्र थीं; जब भी मेसर उत्सर्जन में अतिरिक्त घटक होते थे,तो पहली स्टोक्स रेखा के अपवाद के साथ सभी रमन उत्सर्जन रेखाएँ कभी-कभी कई सौ cm−1 तक परितृप्त चौड़ी हो जाती थीं।[16] ये शक्तिहीन सातत्य, जैसा कि उनका वर्णन किया गया था, उन्होनें पहले रमन अवशोषण वर्णक्रमीय विज्ञान मापन की अनुमति दी थी।
1970 में रॉबर्ट अल्फानो और शापिरो ने आवृत्ति दोगुनी Nd: काँच प्रणाली-वर्जित लेजर का उपयोग करके स्फटिक और काँच में आवृत्ति विस्तार के पहले माप की सूचना दी। निर्गत कंपन लगभग 4 ps और उनमें 5 mJ की कंपन ऊर्जा थीं। गठित तंतुओं ने 400-700 nm की सीमा में पहले श्वेत प्रकाश वर्णक्रम का उत्पादन किया और लेखकों ने स्व-चरण प्रतिरुपण और चार तरंग मिश्रण के माध्यम से अपने गठन की व्याख्या करी। स्रोत के रूप में स्वयं तंतु का कोई वास्तविक उपयोग नहीं था; पुनः भी लेखकों ने संसूचन दिया कि स्फटिक पराद्रुत प्रकाश कपाट के रूप में उपयोगी सिद्ध हो सकते हैं।[18][19] अल्फ़ानो 1970 में सुपरकॉन्टिनम के खोजकर्ता और आविष्कारक थे, जिसमें भौतिक रेव पत्र (24, 592,584,1217 (1970)) के एक ही अंक में तीन प्राथमिक लेख थे, जो अब सुपरकॉन्टिनम कहे जाने वाले परम श्वेत प्रकाश स्रोत पर हैं।
1960 और 1970 के दशक में रमन अवशोषण वर्णक्रमीय विज्ञान द्वारा परमाणु वाष्प, कार्बनिक वाष्प और तरल पदार्थों के अध्ययन ने निरंतर स्रोतों के विकास को प्रेरित किया। 1970 के दशकसे प्रारंभ तक, नैनो सेकंड अवधि के चमक प्रकाश और वाष्पों में लेजर-उत्प्रेरित विश्लेषण किरण के साथ-साथ प्रस्फुरक रंजक से लेजर उत्तेजित प्रतिदीप्ति सातत्यक द्वारा गठित सातत्य का उपयोग उत्तेजित अवस्थाओं का अध्ययन करने के लिए किया जा रहा था।[20] इन सभी स्रोतों में समस्याएँ थीं; जो आवश्यक थी वह एक ऐसा स्रोत था जो उचित दक्षता के साथ उच्च ऊर्जा स्तरों पर व्यापक सातत्य का उत्पादन करता था। 1976 में लिन और स्टोलन ने एक नए नैनोसेकेंड स्रोत की सूचना दी जिसने 530 nm पर केंद्रित 110-180 nm की बैंड चौड़ाई के साथ निरंतर उत्पादन किया, जो लगभग एक किलोवाट की उत्पादन ऊर्जाओं पर केंद्रित था।[20] प्रणाली ने 19.5 मीटर लंबे, 7 μm अंतर्भाग व्यास सिलिका तंतु को स्पंदित करने के लिए 15-20 nm बैंड चौड़ाई के साथ 10 ns कंपन का उत्पादन करने वाले 10-20 kW रंजक लेजर का उपयोग किया और वे केवल 5-10% के क्षेत्र में युग्मन दक्षता का प्रबंधन कर सके।
1978 तक लिन और गुयेन ने कई सातत्य की सूचना दी, विशेष रूप से एक 315 मीटर लंबे GeO का उपयोग करके जो 0.7-1.6 μm और 33 μm अंतर्भाग के साथ अपमिश्रित सिलिका तंतु में विस्तृत हैं।[21] प्रकाशीय व्यवस्था स्टोलन के साथ लिन के पिछले कार्य समान थे, इस उदाहरण को छोड़कर स्पंदित स्रोत 150 kW, 20 ns, Q-स्विचन Nd:YAG लेजर थे। निश्चित ही, उनके पास इतनी अधिक ऊर्जा उपलब्ध थी कि तंतु को क्षति से बचाने के लिए दो तिहाई को क्षीण कर दिया गया था। तंतु में युग्मित 50 kW 12 kW सातत्य के रूप में उभरे स्टोक्स रेखाएँ 1.3 μm तक स्पष्ट रूप से दिखाई दे रही थीं, जिस बिंदु पर 1.38 μm पर जल के अवशोषण के कारण बड़े क्षति को छोड़कर, सातत्य सुचारू होना प्रारम्भ हो गया था। जैसे ही उन्होंने प्रक्षेपण ऊर्जा को 50 kW से अधिक बढ़ाया, उन्होंने देखा कि सातत्य दृश्य वर्णक्रम के हरे भाग में नीचे तक फैला हुआ है। हालांकि, उच्च ऊर्जा के स्तर ने उनके तंतु को शीघ्र ही क्षतिग्रस्त कर दिया। उसी पट्रक में उन्होंने 6 μm अंतर्भाग व्यास और कुछ 100 m लंबाई के साथ एकल प्रणाली तंतु भी स्पंदित किया। इसने कम प्रक्षेपण और निर्गत ऊर्जाओं के साथ 0.9 μm से 1.7 μm तक समान सातत्य उत्पन्न की। इसे साकार किए बिना, उन्होंने पहली बार प्रकाशीय सॉलिटॉन भी उत्पन्न किया था।
1980 का दशक
1980 में फ़ूजी एट अल ने प्रणाली-वर्जित Nd:YAG के साथ लिन के 1978 की व्यवस्था को दोहराया।[22] कंपन की उत्कर्ष ऊर्जा 100 kW से अधिक होने की सूचना दी गई थी और उन्होंने 10 μm अंतर्भाग एकल-प्रणाली GE अपमिश्रित तंतु में 70% से उन्नत युग्मन कार्यक्षमता प्राप्त की थी। असामान्य रूप से, उन्होंने अपनी कंपन अवधि की सूचना नहीं दी। उनके वर्णक्रम ने 300 nm से 2100 nm तक सिलिका में पूरी वर्णक्रमीय गवाक्ष को विस्तृत कर दिया था। लेखकों ने स्वयं को वर्णक्रम के दृश्य पक्ष से संबंधित किया और स्पंदित के चार-तरंग मिश्रण और रमन ने स्टोक्स को युग के लिए उत्पन्न करने के लिए मुख्य तंत्र की पहचान की। हालांकि, कुछ उच्च व्यवस्था प्रणाली थीं, जिन्हें स्पंदित और स्टोक्स रेखाओ के बीच योग-आवृत्ति युग के लिए उत्तरदायी ठहराया गया था। चरण-मिलान की स्थिति अप-परिवर्तित प्रकाश के युग्मन और आवरण प्रणाली के अर्ध-सातत्य द्वारा पूरी की गई थी।
वाशियो एट अल द्वारा एक और अग्रिम सूचना दी गई।[23] 1980 में जब उन्होंने 1.34 μm Q-स्विचन Nd:YAG लेजर के साथ 50 m एकल-प्रणाली तंतु को स्पंदित किया। यह उनके तंतु के लिए विषम फैलाव व्यवस्था के अंदर था और परिणाम निरंतर था जो 1.15 से 1.6 μm तक फैला हुआ था और कोई अलग स्टोक्स रेखा नहीं दिखी।
इस बिंदु तक किसी ने निश्चित ही उपयुक्त स्पष्टीकरण नहीं दिया था कि तंतु में लंबी तरंग दैर्ध्य पर स्टोक्स रेखाओ के बीच सातत्य क्यों सुचारू हो जाती है। अधिकांश स्थितियों में यह सॉलिटॉन तंत्र द्वारा समझाया गया है; हालाँकि,1985 तक तंतु में सॉलिटॉन की सूचना नहीं दी गई थी।[24][25] और यह संपादित किया गया था कि स्व-चरण प्रतिरुपण देखे गए व्यापक सातत्य के लिए उत्तरदायी नहीं हो सकता है, लेकिन अधिकांश भाग के लिए स्पष्टीकरण के रूप में कुछ और प्रस्तुत किया गया था।
1982 में स्मिरनोव एट अल[26] ने 1978 में लिन द्वारा प्राप्त किए गए समान परिणामों की सूचना दी गई। 0.53 और 1.06 μm पर स्पंदित किए गए बहुपद्वति फॉस्फोसिलिकेट तंतु का उपयोग करते हुए, उन्होंने सामान्य स्टोक्स घटकों और एक वर्णक्रम को देखा जो पराबैंगनी से निकट अवरक्त तक विस्तारित था। उन्होंने गणना की कि स्व-चरण प्रतिरुपण के कारण वर्णक्रमीय विस्तार 910 cm-1 होना चाहिए था, लेकिन उनका सातत्य 3000 cm-1 से अधिक था। उन्होंने निष्कर्ष निकाला कि एक प्रकाशीय सातत्य को केवल स्व-चरण प्रतिरुपण द्वारा नहीं समझाया जा सकता है। वे चार तरंग मिश्रण को बनाए रखने के लिए तंतु की लंबाई पर चरण-मिलान की कठिनाइयों को इंगित करके जारी रखते हैं, और एक असामान्य क्षति तंत्र की सूचना देते हैं (पश्च दृष्टि से इसे संभवतः बहुत लघु तंतु संगलन माना जाएगा)। वे लोय और शेन द्वारा बहुत पहले दिए गए एक संसूचन पर ध्यान देते हैं[27] कि यदि नैनो सेकंड कंपन आवरण में उप-नैनो सेकंड क्षणिक परिवर्तन सम्मिलित हैं, तो यह व्यापक सातत्य की व्याख्या करेगा।
एक साल बाद किया गया जब फोर्क एट अल ने व्यापक सातत्य में परिणत होने वाली बहुत कम कंपन के इस विचार का अध्ययन किया था[28] और संघट्टनी प्रणाली-वर्जित लेजर से 80 fs कंपन का उपयोग करने की सूचना दी थी।[29] लेज़र की तरंग दैर्ध्य 627 nm थी और उन्होंने एथिलीन ग्लाइकॉल के एक धार को स्पंदित करने के लिए इसका उपयोग किया। उन्होंने परिणामी सातत्य को समतल किया और विभिन्न तरंग दैर्ध्य पर कंपन की अवधि को मापा, यह देखते हुए कि सातत्य का लाल भाग कंपन के सामने और पीछे नीला था। उन्होंने सातत्य में बहुत छोटी चिंराटों की सूचना दी। इन टिप्पणियों और अन्य ने उन्हें यह बताने के लिए प्रेरित किया कि स्व-चरण प्रतिरुपण कुछ अंतर से प्रमुख प्रभाव था। हालांकि उन्होंने यह भी विख्यात किया कि उनकी गणना से पता चलता है कि सातत्य स्व-चरण प्रतिरुपण की तुलना में बहुत बड़ा बना हुआ है, यह संसूचन देता है कि चार-तरंग मिश्रण प्रक्रियाएं भी उपस्थित होनी चाहिए। उन्होंने कहा कि एक फेमटोसेकंड स्रोत का उपयोग करके एक विश्वसनीय, पुनरावृत्ति योग्य सातत्य का उत्पादन करना बहुत सरल था। आगामी वर्षों में इस स्रोत को और विकसित किया गया और अन्य तरल पदार्थों की जांच के लिए उपयोग किया गया।[30]
उसी वर्ष नकाज़ावा और टोकुडा ने Nd:YAG में 1.32 और 1.34 μm में दो संक्रमणों का उपयोग करके इन तरंग दैर्ध्य पर बहुपद्वति तंतु को एक साथ स्पंदित करने की सूचना दी। उन्होंने निरंतर वर्णक्रम को अत्यावश्यक चार तरंग मिश्रण के संयोजन और अनुक्रमिक उत्तेजित रमन प्रकीर्णन के अधिस्थापन के लिए उत्तरदायी ठहराया। इसका मुख्य लाभ यह था कि वे पिछले कार्य की तुलना में कुछ किलोवाट की अपेक्षाकृत कम स्पंदित ऊर्जाओं पर सातत्य उत्पन्न करने में सक्षम थे।[31]
1980 दशक के प्रारम्भआत में अल्फानो, हो, कॉर्कम, मनासाह और अन्य ने कई तरह के प्रयोग किए, हालांकि इनमें से बहुत कम में तंतु सम्मिलित था। अधिकांश कार्य दृश्य क्षेत्र में सातत्य उत्पन्न करने के लिए विभिन्न स्फटिक, तरल पदार्थ, वाष्पों और अर्धचालक को स्पंदित करने के लिए तीव्र स्रोतों (10 ps और नीचे) का उपयोग करने पर केंद्रित है।[32] स्व-चरण प्रतिरुपण सामान्यतः प्रक्रियाओं को समझाने के लिए उपयोग किया जाता था, हालांकि 1980 के दशक के मध्य से दूसरी सुसंगत युग रेखित-चरण प्रतिरुपण [33] और प्रेरित चरण प्रतिरुपण सहित अन्य स्पष्टीकरण प्रस्तुत किए गए थे।[34] निश्चित ही, यह समझाने का प्रयास किया गया था कि स्व-चरण प्रतिरुपण का परिणाम अधिक व्यापक सातत्य में क्यों हो सकता है, ज्यादातर सिद्धांतों में संशोधनों के माध्यम से, जैसे कि धीरे-धीरे अलग-अलग आवरण सन्निकटन जैसे कारकों को सम्मिलित करके किया जा सकता है।[35][36]
1987 दशक में गोम्स एट अल[37] ने एकल प्रणाली फॉस्फोसिलिकेट काँच में सोपानित उत्तेजित रमन प्रकीर्णन की सूचना दी। उन्होंने Q-स्विचन और प्रणाली-वर्जित Nd:YAG के साथ तंतु को स्पंदित किया, जिससे 700 kW उत्कर्ष ऊर्जा के साथ 130 ps कंपन का उत्पादन हुआ। उन्होंने तंतु में 56 kW तक प्रक्षेपण किया और फॉस्फोरस के परिणामस्वरूप सिलिका तंतु के साथ उस बिंदु तक प्राप्त की तुलना में बहुत व्यापक और मिथ्या प्रशंसा सातत्य प्राप्त की। एक साल बाद गौविया-नेटो एट अल[38] ने उसी समूह से प्रतिरुपण अस्थिरता से सॉलिटॉन तरंगों के गठन और प्रसार का वर्णन करने वाला एक प्रपत्र प्रकाशित हुआ। उन्होंने 1.32 μm Nd:YAG लेजर का उपयोग किया जो 7 μm अंतर्भाग व्यास के साथ 100 m एकल प्रणाली तंतु को स्पंदित करने के लिए 200 W उत्कर्ष ऊर्जा के साथ 100 ps कंपन का उत्पादन करती थी। तंतु का शून्य फैलाव तरंग दैर्ध्य 1.30 μm पर था, और स्पंदित को विषम फैलाव प्रवृत्ति के अंदर रखा गया था। उन्होंने 500 fs (सॉलिटॉन) से कम अवधि के साथ निकलने वाले कंपन को विख्यात किया और जैसे ही उन्होंने स्पंदित की ऊर्जा को बढ़ाया, एक सातत्य 1.3 से 1.5 μm तक विस्तृत हो गई।
1990 के दशक
सकल एट अल ने 1992 में तंतु में फेमटोसेकंड कंपन द्वारा उत्पन्न होने पर सुपरकॉन्टिनम (विषम समूह वेग फैलाव क्षेत्र में) के गठन का दस्तावेज़ प्रकाशित किया। उस तिथि तक, समीकरणों के समाधान के रूप में उभरने वाले मौलिक सॉलिटॉन और सॉलिटॉन स्व-आवृत्ति में परिवर्तन के साथ सरलता से सबसे पूर्ण प्रतिरूप था।[39]
1990 के दशक के पर्यन्त प्रकाशीय संचार के लिए तरंग दैर्ध्य विभाजन बहुभाजित संक्रिया (WDM) व्यवस्था में उपयोग के लिए सुपरकॉन्टिनम की प्रयोज्यता की गहन जांच की गई थी। 1993 में मोरीओका एट अल[9] ने एक 100 तरंग दैर्ध्य माध्यम के बहुसंकेतन योजना की सूचना दी जो एक साथ 1.224-1.394 μm वर्णक्रम क्षेत्र में 1.9 nm वर्णक्रमीय रिक्ति के साथ एक सौ 10 ps कंपन का उत्पादन करती है। उन्होंने 1.314 μm पर केंद्रित Nd:YLF स्पंदित का उपयोग करके एक सुपरकॉन्टिनम का उत्पादन किया जो 7.6 ps कंपन का उत्पादन करने के लिए प्रणाली-वर्जित थी। पुनः उन्होंने माध्यमों को उत्पन्न करने के लिए परिणामी सातत्य को एक द्विअर्थी तंतु के साथ निस्यंदित किया।
मोरीओका और मोरी ने 1990 के दशक से लेकर वर्तमान तक सुपरकॉन्टिनम युग का उपयोग करते हुए दूरसंचार प्रौद्योगिकियों का विकास जारी रखा। इसमें उनके शोध में सम्मिलित थे: प्रकाशीय तंतु में समूह वेग फैलाव को मापने के लिए एक सुपरकॉन्टिनम का उपयोग करना;[40] 1 Tbit/s आधारित WDM प्रणाली का प्रदर्शन;[10] और हाल ही में 1000 माध्यम सघन तरंग दैर्ध्य बहुभाजित संक्रिया (DWDM) व्यवस्था 2.8 Tbit/s में सक्षम है जो 60 nm से अधिक चौड़े सुपरकॉन्टिनम का उपयोग कर रहा है।[1]
तंतु आधारित लेजर द्वारा स्पंदित किए गए तंतु आधारित सुपरकॉन्टिनम का पहला प्रदर्शन चेर्निकोव एट अल द्वारा प्रतिवेदित किया गया था।[41] 1997 में उन्होंने एकल-प्रणाली अटर्बियम और एर्बियम-अपमिश्रित तंतु में निष्क्रिय Q-स्विचन प्राप्त करने के लिए वितरित पार्श्व-प्रकीर्णन का उपयोग किया। निष्क्रिय Q-स्विचन से 10 kW उत्कर्ष ऊर्जा और 2 ns अवधि के साथ कंपन उत्पन्न होते हैं। परिणामी सातत्य 1 μm से सिलिका गवाक्ष के किनारे तक 2.3 μm तक फैली हुई है। पहली तीन स्टोक्स रेखाएँ दिखाई दे रही थीं और सातत्य लगभग 0.7 μm तक फैला हुआ था लेकिन ऊर्जा के स्तर में परितृप्त कमी आई थी।
2000 से प्रगति
1980 के दशक के पर्यन्त किए गए अग्रिमों का अर्थ स्पष्ट हो गया था कि तंतु में सबसे व्यापक सातत्य प्राप्त करने के लिए, विषम फैलाव प्रवृत्ति में स्पंदित करना सबसे कुशल था। हालांकि उच्च ऊर्जा 1 μm लेसरों के साथ इसका लाभ उठाना कठिन था क्योंकि पारंपरिक सिलिका तंतु में 1.3 μm से बहुत कम शून्य फैलाव तरंग दैर्ध्य प्राप्त करना अत्यंत कठिन प्रमाणित हुआ था। 1996 में नाइट एट अल द्वारा फोटोनिक-स्फटिक तंतु (PCF) के आविष्कार के साथ एक समाधान सामने आया।[42] PCF के गुणों पर अन्यत्र विस्तार से चर्चा की गई है, लेकिन उनके पास दो गुण हैं जो PCF को सुपरकॉन्टिनम युग के लिए एक उत्कृष्ट माध्यम बनाते हैं, अर्थात् उच्च अरैखिकता और अनुकूलन योग्य शून्य फैलाव तरंग दैर्ध्य। पहले में रंका एट अल थे। 2000 में,[5] जिन्होंने 767 nm पर शून्य फैलाव और 1.7 μm अंतर्भाग व्यास के साथ 75 cm PCF का उपयोग किया। उन्होंने 400 और 1450 nm के बीच एक सपाट सातत्य उत्पन्न करने के लिए 790 nm पर 100 fs, 800 pJ कंपन के साथ तंतु को स्पंदित किया।
इस कार्य के बाद अन्य लोगों ने उच्च ऊर्जा वाले फेमटोसेकंड Ti:सफायर लेसरों के साथ लगभग 800 nm के शून्य फैलाव वाले PCF की छोटी लंबाई को स्पंदित किया। लेहटन एट अल[43] ने एक द्विप्रतिरोधी PCF में सातत्य के गठन पर ध्रुवीकरण के प्रभाव का अध्ययन किया, साथ ही साथ स्पंदित तरंग दैर्ध्य (728-810 nm) और कंपन अवधि (70-300 fs ) को अलग किया। उन्होंने पाया कि 300 fs कंपन के साथ विषम क्षेत्र के अंदर सबसे अच्छी सातत्य बनाई गई थी। लघु कंपन के परिणामस्वरूप सोलिटोन स्पष्ट रूप से अलग हो गए जो वर्णक्रमीय निर्गत में दिखाई दे रहे थे। हेरमैन एट अल ने फेमटोसेकंड सुपरकॉन्टिनम के विकास की एक ठोस व्याख्या प्रदान की, विशेष रूप से इस प्रक्रिया के पर्यन्त सोलिटोन को उच्च क्रम से मौलिक तक कम करना और फैलाने वाली तरंगों का उत्पादन।[44][45] तब पूर्णतया तंतु एकीकृत फेमटोसेकंड स्रोत विकसित और प्रदर्शित किए गए हैं।[46][47]
2000 के बाद से विकास के अन्य क्षेत्रों में सम्मिलित हैं: सुपरकॉन्टिनम स्रोत जो पिकोसेकंड, नैनोसेकंड और CW व्यवस्थाओं में कार्य करते हैं; और नई सामग्रियों, उत्पादन प्रविधि और शुंडाकृति को सम्मिलित करने के लिए तंतुओं का विकास; व्यापक सातत्य उत्पन्न करने के लिए नवीन विधियाँ; फोटोनिक अतिलघु तारों में सुपरकॉन्टिनम का वर्णन करने के लिए उपन्यास प्रसार समीकरण,[48] और सुपरकॉन्टिनम युग की व्याख्या और सहायता के लिए संख्यात्मक प्रतिरूप का विकास हैं। दुर्भाग्य से, इन उपलब्धियों की गहन चर्चा इस लेख से परे है लेकिन पाठक को डुडले एट अल द्वारा एक उत्कृष्ट समीक्षा लेख के लिए संदर्भित किया जाता है।[49]
एकीकृत फोटोनिक्स मचान में सुपरकॉन्टिनम युग
जबकि प्रकाशीय तंतु अपनी स्थापना के बाद से सुपरकॉन्टिनम युग का कार्योपयोगी रहा है, सुपरकॉन्टिनम के एकीकृत तरंग पथक आधारित स्रोत इक्कीसवीं सदी में अनुसंधान का सक्रिय क्षेत्र बन गया हैं। ये शकल-मापक मचान सुपरकॉन्टिनम स्रोतों के उन उपकरणों में लघु करने की प्रतिज्ञा करते हैं जो सघन, सुदृढ़, मापनीय, बड़े पैमाने पर उत्पादक और अधिक अल्पव्यय सम्बन्धी हैं। इस तरह के मचान तरंग पथक के संकरण-अनुभागीय ज्यामिति को अलग करके फैलाव अभियांत्रिकी की अनुमति देते हैं। सिलिकॉन आधार सामग्री जैसे सिलिकॉन डाइऑक्साइड,[50] सिलिकॉन नाइट्राइड,[51][52] स्फटिक और अनाकार[53][54] सिलिकॉन ने सुपरकॉन्टिनम युग को दृश्यता में फैलाते हुए प्रदर्शित किया है,[55] अवरक्त के निकट[55][56] और मध्य अवरक्त[56][57] विद्युत चुम्बकीय वर्णक्रम के क्षेत्र आदि। 2015 तक, शकल पर उत्पन्न सबसे चौड़ा सुपरकॉन्टिनम अवरक्त तरंग दैर्ध्य क्षेत्र के लिए दृश्य में 470 nm से 2130 nm तक विस्तृत है।[58]
तंतु में सातत्य निर्माण की गतिशीलता का विवरण
इस खंड में हम उन दो मुख्य प्रवृत्तियों की गतिशीलता पर संक्षेप में चर्चा करेंगे जिन तंतुओ में सुपरकॉन्टिनम उत्पन्न होता है। जैसा कि पहले कहा गया है कि एक सुपरकॉन्टिनम व्यापक वर्णक्रमीय विस्तार के कारण कई गैर-रैखिक प्रक्रियाओं के संवाद के माध्यम से होता है। इनमें से कई प्रक्रियाएँ जैसे: स्व-चरण प्रतिरुपण, चार-तरंग मिश्रण और सॉलिटॉन आधारित गतिकी कुछ समय के लिए व्यक्तिगत रूप से अच्छी तरह से समझी गई हैं। हाल के वर्षों में सफलताओं में यह समझना और प्रतिरूप करना सम्मिलित है कि सुपरकॉन्टिनम उत्पन्न करने के लिए ये सभी प्रक्रियाएँ एक साथ कैसे परस्पर क्रिया करती हैं और सातत्य गठन को बढ़ाने और नियंत्रित करने के लिए मापदंडों को कैसे अभियंत्रित किया जा सकता है। दो मुख्य व्यवस्थाएं सॉलिटॉन विखंडन व्यवस्था और प्रतिरुपण अस्थिर व्यवस्था हैं। भौतिक प्रक्रियाओं को परितृप्त समान माना जा सकता है और विवरण निश्चित ही हमें उन प्रक्रियाओं के बीच अंतर करने में सक्षम होता है जो अलग-अलग स्पंदित स्थितियों के लिए निरंतर गठन को चलाते हैं। एक तीसरी प्रवृत्ति, सामान्य फैलाव (प्रकाशिकी) क्षेत्र में स्पंदित भी सम्मिलित है। यह सुपरकॉन्टिनम उत्पन्न करने का एक पूर्णतया व्यवहार्य माध्यम है। हालाँकि, इस पद्धति से समान बैंड विस्तार उत्पन्न करना संभव नहीं है।
सॉलिटॉन विखंडन प्रवृत्ति
सॉलिटॉन विखंडन प्रवृत्ति में लघु, उच्च ऊर्जा, फेमटोसेकंड कंपन को PCF या अन्य अत्यधिक गैर-रैखिक तंतु में प्रक्षेपण किया जाता है। फेमटोसेकंड कंपन को उच्च क्रम सॉलिटॉन के रूप में माना जा सकता है, फलस्वरूप यह तीव्रता से फैलता है और पुनः मौलिक सॉलिटॉन में विखंडन करता है। विखंडन प्रक्रिया के पर्यन्त अतिरिक्त ऊर्जा लघु तरंगदैर्घ्य पक्ष पर परिक्षेपी तरंगों के रूप में बहाई जाती है। सामान्यतः ये फैलाने वाली तरंगें और आगे नहीं बढ़ेंगी[49] और इस प्रकार स्पंदित का विस्तार लघु होना इस बात पर निर्भर करता है कि सॉलिटॉन श्वास लेने के पर्यन्त कितने व्यापक रूप से फैलता है।[59][60] मौलिक सॉलिटॉन तब अंतर-कंपन रमन प्रकीर्णन से गुजरते हैं और लंबी तरंग दैर्ध्य (जिसे सॉलिटॉन स्व-आवृत्ति परिवर्तन के रूप में भी जाना जाता है) में स्थानांतरित हो जाते हैं, जिससे सातत्य का लंबा तरंग दैर्ध्य उत्पन्न होता है। सोलिटोन रमन सातत्य के लिए चार-तरंग मिश्रण के माध्यम से फैलाने वाले विकिरण और संकरण-चरण प्रतिरुपण के साथ संवाद करना संभव है ।[61] [62] कुछ परिस्थितियों में, इन फैलाने वाली तरंगों को सॉलिटॉन संपाशन प्रभाव के माध्यम से सॉलिटॉन के साथ जोड़ा जाना संभव है।[63][64] इस प्रभाव का अर्थ है कि जैसे ही सॉलिटॉन स्व-आवृत्ति लंबी तरंग दैर्ध्य में बदल जाती है, युग्मित फैलाव तरंग को छोटे तरंग दैर्ध्य में स्थानांतरित कर दिया जाता है, जैसा कि समूह वेग मिलान स्थितियों द्वारा निर्धारित किया जाता है। सामान्यतः, यह सॉलिटॉन संपाशन तंत्र सातत्य को किसी भी अन्य तंत्र के माध्यम से कम तरंग दैर्ध्य तक विस्तारित करने की अनुमति देते है।
इस प्रवृत्ति में संचालित PCF में उत्पन्न पहला सुपरकॉन्टिनम[5]और तत्काल के कई प्रयोगों ने भी स्पंदित स्रोत के रूप में अत्यधिक-लघु कंपन फेमटोसेकंड व्यवस्था का उपयोग किया गया।[49]इस प्रवृत्ति व्यवस्था के मुख्य लाभों में से एक यह है कि सातत्य प्रायः उच्च स्तर की लौकिक सुसंगतता प्रदर्शित करती है,[49]इसके अतिरिक्त PCF की बहुत कम लंबाई में व्यापक सुपरकॉन्टिनम उत्पन्न करना संभव है। क्षति में सातत्य में बहुत अधिक औसत ऊर्जा को मापक करने में असमर्थता सम्मिलित है, हालांकि यहां सीमित कारक उपलब्ध स्पंदित स्रोत हैं; और सामान्यतः वर्णक्रमीय घटकों की स्थानीय प्रकृति के कारण वर्णक्रम समतल नहीं होता है जो इसे उत्पन्न करता है।
यह प्रवृत्ति प्रभावी है या नहीं इसका व्याख्यान कंपन और तंतु मापक से लगाया जा सकता है। एक सॉलिटॉन विखंडन लंबाई परिभाषित कर सकते हैं, उस लंबाई का आकलन करने के लिए जिस पर उच्चतम सॉलिटॉन संपीड़न प्राप्त किया जाता है, जैसे कि:
जहाँ विशेषता फैलाव लंबाई है और सॉलिटॉन प्रणाली है। चूंकि इस लंबाई में विखंडन होता है, ऐसा है कि तंतु की लंबाई और अन्य विशिष्ट लंबाई के पैमाने जैसे प्रतिरुपण अस्थिरता लंबाई से कम है, वहां विखंडन प्रभावी रहेगा।
प्रतिरुपण अस्थिरता प्रवृत्ति
प्रतिरुपण अस्थिरता (MI), निरंतर तरंग (CW) या अर्ध-निरंतर लहर क्षेत्रों के टूटने की ओर जाता है, जो मौलिक सॉलिटोन की एक श्रेणी बन जाती है। इस बात पर जोर देना महत्वपूर्ण है कि इस प्रवृत्ति में उत्पन्न सोलिटन्स मौलिक हैं, क्योंकि CW और अर्ध-CW सुपरकॉन्टिनम गठन पर कई दस्तावेजों में उपरोक्त वर्णित सोलिटॉन विखंडन और फैलाने वाली लहर युग के लिए लघु तरंग दैर्ध्य युग को मान्यता दी है।[65][66] सॉलिटॉन विखंडन प्रवृत्ति के समान माध्यम से, सातत्य के लंबे तरंग दैर्ध्य पक्ष को अंतः कंपन रमन प्रकीर्णन और स्व-आवृत्ति को लंबी तरंग दैर्ध्य में स्थानांतरित करने वाले सॉलिटॉन द्वारा उत्पन्न किया जाता है। जैसा कि MI प्रक्रिया ध्वनि संचालित है, विभिन्न ऊर्जाओं के साथ सॉलिटॉन का वितरण बनाया जाता है, जिसके परिणामस्वरूप स्व-आवृत्ति स्थानांतरण की विभिन्न दरें होती हैं। शुद्ध परिणाम यह है कि MI संचालित सॉलिटॉन-रमन सातत्य विखंडन प्रवृत्ति में उत्पन्न होने वालों की तुलना में वर्णक्रमीय रूप से बहुत अधिक समतल होता है। लघु तरंग दैर्ध्य युग चार-लहर मिश्रण द्वारा संचालित होती है, विशेष रूप से अर्ध-CW प्रवृत्ति में उच्च उत्कर्ष ऊर्जा के लिए संचालित होती है। शुद्ध CW प्रवृत्ति में, लघु तरंग दैर्ध्य युग केवल हाल ही में 1 μm स्पंदित स्रोत की तुलना में कम तरंग दैर्ध्य पर प्राप्त की गई है। इस कार्य में MI संचालित प्रवृत्ति में लघु तरंग दैर्ध्य युग में एक भूमिका निभाने के लिए सॉलिटॉन संपाशन को दिखाया गया है।
एक सातत्य केवल MI प्रवृत्ति में होगी यदि तंतु और क्षेत्र मापक ऐसे हैं कि MI रूपों और विखंडन जैसी अन्य प्रक्रियाओं पर प्रभावी है। विखंडन प्रवृत्ति के समान आचरण में यह MI के लिए एक विशेषता लंबाई पैमाने विकसित करने के लिए रचनात्मक है, :
जहां उत्कर्ष ऊर्जा स्तर के नीचे पृष्ठभूमि ध्वनि का स्तर है। समीकरण अनिवार्य रूप से MI लाभ के लिए पृष्ठभूमि सातत्य ध्वनि को सॉलिटॉन में बढ़ाने के लिए आवश्यक लंबाई का एक उपाय है। सामान्यतः यह लघु ध्वनि ~200 dB कम होने के लिए लिया जाता है। अत: प्रदान किया गया तब अर्ध-CW कार्य कलाप में MI सॉलिटॉन विखंडन पर प्रभावी होगा और इस स्थिति को इस प्रकार व्यक्त किया जा सकता है:
समीकरण का मध्य पद केवल सॉलिटॉन समीकरण है MI के प्रभावी होने के लिए हमें बाएं हाथ की ओर को दाहिने हाथ की तुलना में बहुत कम होना चाहिए, जिसका अर्थ है कि सोलिटॉन क्रम 4 से बहुत अधिक होना चाहिए। व्यवहार में यह सीमा लगभग होने के रूप में स्थापित की गई है ।[49] इसलिए, हम देख सकते हैं कि यह मुख्य रूप से अत्यधिक-लघु कंपन हैं जो सॉलिटॉन विखंडन तंत्र की ओर ले जाती हैं।
सामान्य फैलाव प्रवृत्ति में पंपिंग
ऊपर बताए गए दो नियम मानते हैं कि स्पंदित विषम फैलाव क्षेत्र में है। सामान्य क्षेत्र में सुपरकॉन्टिनम बनाना संभव है और निश्चित ही ऐतिहासिक अवलोकन में चर्चा किए गए कई प्रारम्भिक परिणाम सामान्य फैलाव प्रवृत्ति में कंपन किए गए थे। यदि निवेश कंपन परितृप्त कम हैं तो स्व-चरण प्रतिरुपण से महत्वपूर्ण विस्तार हो सकता है जो अस्थायी रूप से सुसंगत है। हालांकि, यदि कंपन बहुत लघु नहीं है तो उत्तेजित-रमन प्रकीर्णन प्रभावी हो जाता है और सामान्यतः सोपानित असतत स्टोक्स रेखाओ की एक श्रृंखला तब तक दिखाई देगी जब तक कि शून्य फैलाव तरंग दैर्ध्य तक नहीं पहुंच जाता। इस बिंदु पर एक सॉलिटॉन रमन सातत्य बन सकता है। जैसा कि विसंगति में स्पंदित सातत्य युग के लिए अधिक कुशल है, अधिकांश आधुनिक स्रोत सामान्य फैलाव प्रवृत्ति में स्पंदित होने से बचते हैं।
संदर्भ
- ↑ 1.0 1.1 1.2 Takara, H.; Ohara, T.; Yamamoto, T.; Masuda, H.; Abe, M.; Takahashi, H.; Morioka, T. (2005). "Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source". Electronics Letters. Institution of Engineering and Technology (IET). 41 (5): 270-271. doi:10.1049/el:20057011. ISSN 0013-5194.
- ↑ Spie (2014). "Robert Alfano on the supercontinuum: History and future applications". SPIE Newsroom. doi:10.1117/2.3201404.03.
- ↑ Hartl, I.; Li, X. D.; Chudoba, C.; Ghanta, R. K.; Ko, T. H.; Fujimoto, J. G.; Ranka, J. K.; Windeler, R. S. (2001-05-01). "Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber". Optics Letters. The Optical Society. 26 (9): 608–10. doi:10.1364/ol.26.000608. ISSN 0146-9592. PMID 18040398.
- ↑ Hsiung, Pei-Lin; Chen, Yu; Ko, Tony H.; Fujimoto, James G.; de Matos, Christiano J.S.; Popov, Sergei V.; Taylor, James R.; Gapontsev, Valentin P. (2004-11-01). "Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source". Optics Express. The Optical Society. 12 (22): 5287–95. doi:10.1364/opex.12.005287. ISSN 1094-4087. PMID 19484089.
- ↑ 5.0 5.1 5.2 Ranka, Jinendra K.; Windeler, Robert S.; Stentz, Andrew J. (2000-01-01). "Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm". Optics Letters. The Optical Society. 25 (1): 25–7. doi:10.1364/ol.25.000025. ISSN 0146-9592. PMID 18059770.
- ↑ Jones, D. J. (2000-04-28). "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis". Science. American Association for the Advancement of Science (AAAS). 288 (5466): 635–639. doi:10.1126/science.288.5466.635. ISSN 0036-8075. PMID 10784441.
- ↑ Schnatz, H.; Hollberg, L.W. (2003). "Optical frequency combs: From frequency metrology to optical phase control". IEEE Journal of Selected Topics in Quantum Electronics. Institute of Electrical and Electronics Engineers (IEEE). 9 (4): 1041–1058. doi:10.1109/jstqe.2003.819109. ISSN 1077-260X.
- ↑ Dunsby, C; Lanigan, P M P; McGinty, J; Elson, D S; Requejo-Isidro, J; et al. (2004-11-20). "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy". Journal of Physics D: Applied Physics. IOP Publishing. 37 (23): 3296–3303. doi:10.1088/0022-3727/37/23/011. ISSN 0022-3727. S2CID 401052.
- ↑ 9.0 9.1 Morioka, T.; Mori, K.; Saruwatari, M. (1993-05-13). "More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres". Electronics Letters. Institution of Engineering and Technology (IET). 29 (10): 862–864. doi:10.1049/el:19930576. ISSN 1350-911X.
- ↑ 10.0 10.1 Morioka, T.; Takara, H.; Kawanishi, S.; Kamatani, O.; Takiguchi, K.; et al. (1996). "1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source". Electronics Letters. Institution of Engineering and Technology (IET). 32 (10): 906-907. doi:10.1049/el:19960604. ISSN 0013-5194.
- ↑ H. Delbarre and M. Tassou, Atmospheric gas trace detection with ultrashort pulses or white light continuum, in Conference on Lasers and Electro-Optics Europe, (2000), p. CWF104.
- ↑ Sanders, S.T. (2002-11-01). "Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy". Applied Physics B: Lasers and Optics. Springer Science and Business Media LLC. 75 (6–7): 799–802. doi:10.1007/s00340-002-1044-z. ISSN 0946-2171. S2CID 122125718.
- ↑ M. Ere-Tassou, C. Przygodzki, E. Fertein, and H. Delbarre, Femtosecond laser source for real-time atmospheric gas sensing in the UV - visible, Opt. Commun. 220, 215–221 (2003).
- ↑ DeVore, P. T. S.; Solli, D. R.; Ropers, C.; Koonath, P.; Jalali, B. (2012-03-05). "Stimulated supercontinuum generation extends broadening limits in silicon". Applied Physics Letters. 100 (10): 101111. Bibcode:2012ApPhL.100j1111D. doi:10.1063/1.3692103. ISSN 0003-6951.
- ↑ Halir, R.; Okawachi, Y.; Levy, J. S.; Foster, M. A.; Lipson, M.; Gaeta, A. L. (2012-05-15). "Ultrabroadband supercontinuum generation in a CMOS-compatible platform". Optics Letters (in English). 37 (10): 1685–7. Bibcode:2012OptL...37.1685H. doi:10.1364/OL.37.001685. ISSN 1539-4794. PMID 22627537.
- ↑ 16.0 16.1 Jones, W. J.; Stoicheff, B. P. (1964-11-30). "Inverse Raman Spectra: Induced Absorption at Optical Frequencies". Physical Review Letters. American Physical Society (APS). 13 (22): 657–659. doi:10.1103/physrevlett.13.657. ISSN 0031-9007.
- ↑ Stoicheff, B.P. (1963). "Characteristics of stimulated raman radiation generated by coherent light". Physics Letters. Elsevier BV. 7 (3): 186–188. doi:10.1016/0031-9163(63)90377-9. ISSN 0031-9163.
- ↑ Alfano, R. R.; Shapiro, S. L. (1970-03-16). "Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses". Physical Review Letters. American Physical Society (APS). 24 (11): 592–594. doi:10.1103/physrevlett.24.592. ISSN 0031-9007.
- ↑ Alfano, R. R.; Shapiro, S. L. (1970-06-01). "Direct Distortion of Electronic Clouds of Rare-Gas Atoms in Intense Electric Fields". Physical Review Letters. American Physical Society (APS). 24 (22): 1217–1220. doi:10.1103/physrevlett.24.1217. ISSN 0031-9007.
- ↑ 20.0 20.1 Lin, Chinlon; Stolen, R. H. (1976-02-15). "New nanosecond continuum for excited‐state spectroscopy". Applied Physics Letters. AIP Publishing. 28 (4): 216–218. doi:10.1063/1.88702. ISSN 0003-6951.
- ↑ Lin, Chinlon; Nguyen, V.T.; French, W.G. (1978). "Wideband near-i.r. continuum (0.7–2.1 μm) generated in low-loss optical fibres". Electronics Letters. Institution of Engineering and Technology (IET). 14 (25): 822-823. doi:10.1049/el:19780556. ISSN 0013-5194.
- ↑ Fujii, Y.; Kawasaki, B. S.; Hill, K. O.; Johnson, D. C. (1980-02-01). "Sum-frequency light generation in optical fibers". Optics Letters. The Optical Society. 5 (2): 48. doi:10.1364/ol.5.000048. ISSN 0146-9592. PMID 19693118.
- ↑ Washio, K.; Inoue, K.; Tanigawa, T. (1980). "Efficient generation of near-i.r. stimulated light scattering in optical fibres pumped in low-dispersion region at 1.3 μm". Electronics Letters. Institution of Engineering and Technology (IET). 16 (9): 331-333. doi:10.1049/el:19800237. ISSN 0013-5194.
- ↑ E. Golovchenko, E. M. Dianov, A. Prokhorov, and V. Serkin, Decay of optical solitons, JETP Lett. 42, 87–91 (1985).
- ↑ Mitschke, F. M.; Mollenauer, L. F. (1986-10-01). "Discovery of the soliton self-frequency shift". Optics Letters. The Optical Society. 11 (10): 659–61. doi:10.1364/ol.11.000659. ISSN 0146-9592. PMID 19738720.
- ↑ V. Grigor'yants, V. I. Smirnov, and Y. Chamorovski, Generation of wide-band optical continuum in fiber waveguides, Sov. J. Quant. Elect. 12, 841–847 (1982).
- ↑ Loy, M.; Shen, Y. (1973). "Study of self-focusing and small-scale filaments of light in nonlinear media". IEEE Journal of Quantum Electronics. Institute of Electrical and Electronics Engineers (IEEE). 9 (3): 409–422. doi:10.1109/jqe.1973.1077489. ISSN 0018-9197.
- ↑ Fork, R. L.; Tomlinson, W. J.; Shank, C. V.; Hirlimann, C.; Yen, R. (1983-01-01). "Femtosecond white-light continuum pulses". Optics Letters. The Optical Society. 8 (1): 1–3. doi:10.1364/ol.8.000001. ISSN 0146-9592. PMID 19714115.
- ↑ Fork, R. L.; Greene, B. I.; Shank, C. V. (1981). "Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking". Applied Physics Letters. AIP Publishing. 38 (9): 671–672. doi:10.1063/1.92500. ISSN 0003-6951. S2CID 45813878.
- ↑ Knox, W. H.; Downer, M. C.; Fork, R. L.; Shank, C. V. (1984-12-01). "Amplified femtosecond optical pulses and continuum generation at 5-kHz repetition rate". Optics Letters. The Optical Society. 9 (12): 552–4. doi:10.1364/ol.9.000552. ISSN 0146-9592. PMID 19721665.
- ↑ Nakazawa, Masataka; Tokuda, Masamitsu (1983-04-20). "Continuum Spectrum Generation in a Multimode Fiber Using Two Pump Beams at 1.3 µm Wavelength Region". Japanese Journal of Applied Physics. Japan Society of Applied Physics. 22 (Part 2, No. 4): L239–L241. doi:10.1143/jjap.22.l239. ISSN 0021-4922.
- ↑ R. R. Alfano, The Supercontinuum Laser Source: Fundamentals With Updated References (Springer, 2006), 2nd ed.
- ↑ Alfano, R. R.; Wang, Q. Z.; Jimbo, T.; Ho, P. P.; Bhargava, R. N.; Fitzpatrick, B. J. (1987-01-01). "Induced spectral broadening about a second harmonic generated by an intense primary ultrashort laser pulse in ZnSe crystals". Physical Review A. American Physical Society (APS). 35 (1): 459–462. doi:10.1103/physreva.35.459. ISSN 0556-2791. PMID 9897980.
- ↑ Alfano, R. R.; Li, Q. X.; Jimbo, T.; Manassah, J. T.; Ho, P. P. (1986-10-01). "Induced spectral broadening of a weak picosecond pulse in glass produced by an intense picosecond pulse". Optics Letters. The Optical Society. 11 (10): 626–8. doi:10.1364/ol.11.000626. ISSN 0146-9592. PMID 19738709.
- ↑ Manassah, Jamal T.; Alfano, Robert R.; Mustafa, Mustafa (1985). "Spectral distribution of an ultrafast supercontinuum laser source". Physics Letters A. Elsevier BV. 107 (7): 305–309. doi:10.1016/0375-9601(85)90641-3. ISSN 0375-9601.
- ↑ Manassah, Jamal T.; Mustafa, Mustafa A.; Alfano, Robert R.; Po, Ping P. (1985). "Induced supercontinuum and steepening of an ultrafast laser pulse". Physics Letters A. Elsevier BV. 113 (5): 242–247. doi:10.1016/0375-9601(85)90018-0. ISSN 0375-9601.
- ↑ Gomes, A.S.L.; Da Silva, V.L.; Taylor, J.R.; Ainslie, B.J.; Craig, S.P. (1987). "Picosecond stimulated Raman scattering in P2O5-SiO2 based single mode optical fibre". Optics Communications. Elsevier BV. 64 (4): 373–378. doi:10.1016/0030-4018(87)90254-9. ISSN 0030-4018.
- ↑ Gouveia-Neto, A.S.; Gomes, A.S.L.; Taylor, J.R. (1988). "Femto soliton Raman generation". IEEE Journal of Quantum Electronics. Institute of Electrical and Electronics Engineers (IEEE). 24 (2): 332–340. doi:10.1109/3.130. ISSN 0018-9197.
- ↑ Gross, Barry; Manassah, Jamal T. (1992-10-01). "Supercontinuum in the anomalous group-velocity dispersion region". Journal of the Optical Society of America B. The Optical Society. 9 (10): 1813-1818. doi:10.1364/josab.9.001813. ISSN 0740-3224.
- ↑ Mori, K.; Morioka, T.; Saruwatari, M. (1995). "Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 μm compact laser source". IEEE Transactions on Instrumentation and Measurement. Institute of Electrical and Electronics Engineers (IEEE). 44 (3): 712–715. doi:10.1109/19.387315. ISSN 0018-9456.
- ↑ Chernikov, S. V.; Zhu, Y.; Taylor, J. R.; Gapontsev, V. P. (1997-03-01). "Supercontinuum self-Q-switched ytterbium fiber laser". Optics Letters. The Optical Society. 22 (5): 298–300. doi:10.1364/ol.22.000298. ISSN 0146-9592. PMID 18183181.
- ↑ Knight, J. C.; Birks, T. A.; Russell, P. St. J.; Atkin, D. M. (1996-10-01). "All-silica single-mode optical fiber with photonic crystal cladding". Optics Letters. The Optical Society. 21 (19): 1547–9. doi:10.1364/ol.21.001547. ISSN 0146-9592. PMID 19881720.
- ↑ Lehtonen, M.; Genty, G.; Ludvigsen, H.; Kaivola, M. (2003-04-07). "Supercontinuum generation in a highly birefringent microstructured fiber". Applied Physics Letters. AIP Publishing. 82 (14): 2197–2199. doi:10.1063/1.1565679. ISSN 0003-6951.
- ↑ Husakou, A. V.; Herrmann, J. (2001-10-24). "Supercontinuum Generation of Higher-Order Solitons by Fission in Photonic Crystal Fibers". Physical Review Letters. American Physical Society (APS). 87 (20): 203901. doi:10.1103/physrevlett.87.203901. ISSN 0031-9007. PMID 11690475.
- ↑ Herrmann, J.; Griebner, U.; Zhavoronkov, N.; Husakou, A.; Nickel, D.; Knight, J. C.; Wadsworth, W. J.; Russell, P. St. J.; Korn, G. (2002-04-11). "Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers". Physical Review Letters. American Physical Society (APS). 88 (17): 173901. doi:10.1103/physrevlett.88.173901. ISSN 0031-9007. PMID 12005754.
- ↑ R. E. Kennedy, A. B. Rulkov, J. C. Travers, S. V. Popov, V. P. Gapontsev, and J. R. Taylor, High-power completely fiber integrated super-continuum sources, in Proceedings SPIE: Fiber Lasers II: Technology, Systems, and Applications: Lase: Photonics West, , vol. 5709 (SPIE, 2005), vol. 5709, pp. 231–241.
- ↑ Tausenev, Anton V; Kryukov, P G; Bubnov, M M; Likhachev, M E; Romanova, E Yu; Yashkov, M V; Khopin, V F; Salganskii, M Yu (2005-07-31). "Efficient source of femtosecond pulses and its use for broadband supercontinuum generation". Quantum Electronics. IOP Publishing. 35 (7): 581–585. doi:10.1070/qe2005v035n07abeh006586. ISSN 1063-7818.
- ↑ Tran, Truong X.; Biancalana, Fabio (2009-09-22). "An accurate envelope equation for light propagation in photonic nanowires: new nonlinear effects". Optics Express. The Optical Society. 17 (20): 17934–49. doi:10.1364/oe.17.017934. ISSN 1094-4087. PMID 19907582.
- ↑ 49.0 49.1 49.2 49.3 49.4 Dudley, John M.; Genty, Goëry; Coen, Stéphane (2006-10-04). "Supercontinuum generation in photonic crystal fiber". Reviews of Modern Physics. American Physical Society (APS). 78 (4): 1135–1184. doi:10.1103/revmodphys.78.1135. ISSN 0034-6861.
- ↑ Oh, Dong Yoon; Sell, David; Lee, Hansuek; Yang, Ki Youl; Diddams, Scott A.; Vahala, Kerry J. (2014-02-15). "Supercontinuum generation in an on-chip silica waveguide" (PDF). Optics Letters (in English). 39 (4): 1046–8. Bibcode:2014OptL...39.1046O. doi:10.1364/OL.39.001046. ISSN 1539-4794. PMID 24562274.
- ↑ Johnson, Adrea R.; Mayer, Aline S.; Klenner, Alexander; Luke, Kevin; Lamb, Erin S.; Lamont, Michael R. E.; Joshi, Chaitanya; Okawachi, Yoshitomo; Wise, Frank W. (2015-11-01). "Octave-spanning coherent supercontinuum generation in a silicon nitride waveguide". Optics Letters (in English). 40 (21): 5117–20. Bibcode:2015OptL...40.5117J. doi:10.1364/OL.40.005117. ISSN 1539-4794. PMID 26512533. S2CID 38293802.
- ↑ Liu, Xing; Pu, Minhao; Zhou, Binbin; Krückel, Clemens J.; Fülöp, Attila; Torres-Company, Victor; Bache, Morten (2016-06-15). "Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide". Optics Letters (in English). 41 (12): 2719–2722. arXiv:1606.00568. Bibcode:2016OptL...41.2719L. doi:10.1364/OL.41.002719. ISSN 1539-4794. PMID 27304272. S2CID 11118520.
- ↑ Safioui, Jassem; Leo, François; Kuyken, Bart; Gorza, Simon-Pierre; Selvaraja, Shankar Kumar; Baets, Roel; Emplit, Philippe; Roelkens, Gunther; Massar, Serge (2014-02-10). "Supercontinuum generation in hydrogenated amorphous silicon waveguides at telecommunication wavelengths". Optics Express (in English). 22 (3): 3089–97. Bibcode:2014OExpr..22.3089S. doi:10.1364/OE.22.003089. hdl:1854/LU-4367636. ISSN 1094-4087. PMID 24663599.
- ↑ Dave, Utsav D.; Uvin, Sarah; Kuyken, Bart; Selvaraja, Shankar; Leo, Francois; Roelkens, Gunther (2013-12-30). "Telecom to mid-infrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source". Optics Express (in English). 21 (26): 32032–9. Bibcode:2013OExpr..2132032D. doi:10.1364/OE.21.032032. hdl:1854/LU-4317947. ISSN 1094-4087. PMID 24514798.
- ↑ 55.0 55.1 Zhao, Haolan; Kuyken, Bart; Clemmen, Stéphane; Leo, François; Subramanian, Ananth; Dhakal, Ashim; Helin, Philippe; Severi, Simone; Brainis, Edouard (2015-05-15). "Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide". Optics Letters (in English). 40 (10): 2177–80. Bibcode:2015OptL...40.2177Z. doi:10.1364/OL.40.002177. hdl:1854/LU-7047222. ISSN 1539-4794. PMID 26393693.
- ↑ 56.0 56.1 Ettabib, Mohamed A.; Xu, Lin; Bogris, Adonis; Kapsalis, Alexandros; Belal, Mohammad; Lorent, Emerick; Labeye, Pierre; Nicoletti, Sergio; Hammani, Kamal (2015-09-01). "Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide" (PDF). Optics Letters (in English). 40 (17): 4118–21. Bibcode:2015OptL...40.4118E. doi:10.1364/OL.40.004118. ISSN 1539-4794. PMID 26368726.
- ↑ Lau, Ryan K. W.; Lamont, Michael R. E.; Griffith, Austin G.; Okawachi, Yoshitomo; Lipson, Michal; Gaeta, Alexander L. (2014-08-01). "Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides". Optics Letters (in English). 39 (15): 4518–21. Bibcode:2014OptL...39.4518L. CiteSeerX 10.1.1.651.8985. doi:10.1364/OL.39.004518. ISSN 1539-4794. PMID 25078217.
- ↑ Epping, Jörn P.; Hellwig, Tim; Hoekman, Marcel; Mateman, Richard; Leinse, Arne; Heideman, René G.; Rees, Albert van; Slot, Peter J.M. van der; Lee, Chris J. (2015-07-27). "On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth". Optics Express (in English). 23 (15): 19596–604. Bibcode:2015OExpr..2319596E. doi:10.1364/OE.23.019596. ISSN 1094-4087. PMID 26367617.
- ↑ Tran, Truong X.; Biancalana, Fabio (2009-06-25). "Dynamics and control of the early stage of supercontinuum generation in submicron-core optical fibers". Physical Review A. American Physical Society (APS). 79 (6): 065802. doi:10.1103/physreva.79.065802. ISSN 1050-2947.
- ↑ Cristiani, Ilaria; Tediosi, Riccardo; Tartara, Luca; Degiorgio, Vittorio (2004). "Dispersive wave generation by solitons in microstructured optical fibers". Optics Express. The Optical Society. 12 (1): 124–35. doi:10.1364/opex.12.000124. ISSN 1094-4087. PMID 19471518.
- ↑ Gorbach, A.V.; Skryabin, D.V.; Stone, J.M.; Knight, J.C. (2006-10-16). "Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short-wavelength edge of a supercontinuum". Optics Express. The Optical Society. 14 (21): 9854–63. doi:10.1364/oe.14.009854. ISSN 1094-4087. PMID 19529378.
- ↑ Genty, G.; Lehtonen, M.; Ludvigsen, H. (2004-09-20). "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses". Optics Express. The Optical Society. 12 (19): 4614–24. doi:10.1364/opex.12.004614. ISSN 1094-4087. PMID 19484014.
- ↑ Gorbach, Andrey V.; Skryabin, Dmitry V. (2007-11-05). "Theory of radiation trapping by the accelerating solitons in optical fibers". Physical Review A. American Physical Society (APS). 76 (5): 053803. arXiv:0707.1598. doi:10.1103/physreva.76.053803. ISSN 1050-2947. S2CID 13673597.
- ↑ Beaud, P.; Hodel, W.; Zysset, B.; Weber, H. (1987). "Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber". IEEE Journal of Quantum Electronics. Institute of Electrical and Electronics Engineers (IEEE). 23 (11): 1938–1946. doi:10.1109/jqe.1987.1073262. ISSN 0018-9197.
- ↑ Abeeluck, Akheelesh K.; Headley, Clifford (2005-01-01). "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation". Optics Letters. The Optical Society. 30 (1): 61–3. doi:10.1364/ol.30.000061. ISSN 0146-9592. PMID 15648638.
- ↑ Vanholsbeeck, Frédérique; Martin-Lopez, Sonia; González-Herráez, Miguel; Coen, Stéphane (2005-08-22). "The role of pump incoherence in continuous-wave supercontinuum generation". Optics Express. The Optical Society. 13 (17): 6615–25. doi:10.1364/opex.13.006615. ISSN 1094-4087. PMID 19498676.