अव्यवस्था विसर्पण
डिस्लोकेशन क्रीप क्रिस्टलीन पदार्थों में एक विरूपण क्रियाविधि है। डिस्लोकेशन क्रीप में विसरण क्रीप के विपरीत, सामग्री के क्रिस्टल जाली के माध्यम से डिस्लोकेशन की गति सम्मिलित होती है, जिसमें रिक्तियों का विसरण (विस्थापन) प्रमुख क्रीप क्रियाविधि है। यह व्यक्तिगत क्रिस्टल और इस प्रकार सामग्री के प्लास्टिक विरूपण का कारण बनता है।
डिस्लोकेशन क्रीप सामग्री पर विभेदक तनाव के प्रति अत्यधिक संवेदनशील है। निम्न तापमान पर, यह अधिकांश क्रिस्टलीय पदार्थों में प्रमुख विरूपण क्रियाविधि है।[1] नीचे वर्णित कुछ तंत्रिकाएँ स्थानांतरणीय कणों की परीक्षण के द्वारा सत्यापित नहीं की गई हैं या हो सकता है कि इस पर प्रयोगात्मक सूक्ष्मरूपी (माइक्रोस्ट्रक्चरल) अवलोकन से सत्यापित नहीं की गई हो।[2]
सिद्धांत
क्रिस्टल में डिस्लोकेशन
डिस्लोकेशन क्रीप किसी क्रिस्टल जाली के माध्यम से डिस्लोकेशन की गति के कारण होता है। प्रत्येक बार जब डिस्लोकेशन क्रिस्टल के माध्यम से किसी समतल पर गतिमान होती है, तो क्रिस्टल का एक भाग शेष क्रिस्टल के सापेक्ष, समतल के साथ एक जालक बिंदु (लैटिस पॉइंट) के साथ स्थानांतरित हो जाता है। वह तल जो स्थानांतरित और अस्थानांतरित क्षेत्रों को विभाजित करता है, जिसके साथ गति होती है, स्लिप ताल कहलाता है। इस गति को संभव बनाने के लिए, समतल के सभी आयनिक बांधों को तोड़ा जाना चाहिए। यदि सभी बंधन एक ही बार में तोड़ दिए जाएं, तो इसके लिए इतनी अधिक ऊर्जा की आवश्यकता होगी कि डिस्लोकेशन क्रीप केवल सिद्धांत रूप में ही संभव होगा। जब यह मान लिया जाता है कि गति चरण दर चरण होती है, तो बंधन टूटने के पश्चयात शीघ्र ही नए बंध बनते हैं और आवश्यक ऊर्जा बहुत निम्न होती है। आणविक गतिकी की गणना और विकृत सामग्रियों के विश्लेषण से ज्ञात हुआ है कि विरूपण क्रीप विरूपण प्रक्रियाओं में एक महत्वपूर्ण कारक हो सकता है।
एक डिस्लोकेशन को चरण दर चरण तक एक क्रिस्टल जाल में गतिमान रखने के फलस्वरूप, क्रिस्टल जाल के भागों के बीच एक रैखिक जाल दोष उत्पन्न होता है।[3] दो प्रकार की डिस्लोकेशन, एज और स्क्रू डिस्लोकेशन्स, होती हैं। एज डिस्लोकेशन्स क्रिस्टल जाल के भीतर परमाणुओं की एक अतिरिक्त परत के किनारे का निर्माण करती हैं। स्क्रू डिस्लोकेशन्स एक रेखा बनाती है जिसके अनुदिश क्रिस्टल जाली एक जाली बिंदु से ऊपर उठती है। इन दोनों स्थितियों में डिस्लोकेशन लाइन क्रिस्टल जाल के माध्यम से एक रैखिक दोष बनाती है, लेकिन रेखा के सभी पक्षों पर क्रिस्टल अब भी पूर्ण हो सकता है।
डिस्लोकेशन की गति के कारण क्रिस्टल में विस्थापन की लंबाई को बर्गर सदिश कहा जाता है। यह क्रिस्टल जालक में दो परमाणुओं या आयनों के बीच की दूरी के बराबर होती है। इसलिए, प्रत्येक सामग्री के प्रत्येक सर्पी तल के लिए अपने स्वयं के विशिष्ट बर्गर सदिश होते हैं।
क्रिस्टल में सर्पी तल
दोनों एज और स्क्रू डिस्लोकेशन उनके बर्गर सदिश के समानांतर दिशाओं में चलती हैं (स्लिप)। एज की डिस्लोकेशन उनकी डिस्लोकेशन रेखाओं के लंबवत दिशाओं में चलती है और स्क्रू डिस्लोकेशन उनकी डिस्लोकेशन रेखाओं के समानांतर दिशाओं में चलती हैं। इससे क्रिस्टल का एक भाग उसके अन्य भागों के सापेक्ष स्थानांतरित हो जाता है। इस बीच, विस्थापन स्वयं एक सर्पी तल के साथ आगे बढ़ता है। सामग्री (खनिज या धातु) की क्रिस्टल प्रणाली यह निर्धारित करती है कि कितने सर्पी तल संभव हैं, और किस ओरिएंटेशन में। विभेदक तनाव का उन्मुखीकरण यह निर्धारित करता है कि कौन से सर्पी तल सक्रिय हैं और कौन से नहीं हैं। वॉन मिज़ मानदंड में कहा गया है कि किसी सामग्री को विकृत करने के लिए, कम से कम पांच अलग-अलग सर्पी तलों के साथ आंदोलन की आवश्यकता होती है। एक डिस्लोकेशन सदैव एक सीधी रेखा नहीं होगी और इस प्रकार यह एक से अधिक सर्पी तलों के साथ आगे बढ़ सकती है। जहां डिस्लोकेशन लाइन का अभिविन्यास होता है, वहां स्क्रू डिस्लोकेशन एज डिस्लोकेशन के रूप में जारी रह सकती है और इसका विपरीत भी संभव होता है।
डिस्लोकेशन की उत्पत्ति
जब एक क्रिस्टलीय पदार्थ को अलग-अलग तनाव में रखा जाता है, तो कण परिसीमाओं पर डिस्लोकेशन बन जाती हैं और क्रिस्टल के माध्यम से आगे बढ़ना प्रारम्भ हो जाता है।
फ़्रैंक-रीड स्रोतों से नई डिस्लोकेशन भी बन सकती हैं। इनका निर्माण तब होता है जब एक डिस्लोकेशन को दो स्थानों पर रोक दिया जाता है। बीच में डिस्लोकेशन का भाग आगे बढ़ेगा, जिससे डिस्लोकेशन रेखा वक्र हो जाएगी। यह वक्रता तब तक सतत रह सकती है जब तक डिस्लोकेशन स्वयं पर वक्र होकर एक वृत्त का निर्माण नहीं कर लेती। वृत्त के केंद्र में, स्रोत एक नई डिस्लोकेशन उत्पन्न करेगा, और यह प्रक्रिया एक दूसरे के ऊपर संकेंद्रित डिस्लोकेशनओं का एक क्रम उत्पन्न करेगी। फ्रैंक-रीड स्रोत तब भी बनाए जाते हैं जब स्क्रू डिस्लोकेशन डबल क्रॉस-स्लिप (स्लिप तल को दो बार बदलें), क्योंकि डिस्लोकेशन रेखा में जॉग्स तीसरे तल में डिस्लोकेशन को पिन करते हैं।
डिस्लोकेशन गतिविधि
डिस्लोकेशन सर्पी
एक डिस्लोकेशन आदर्श रूप से एक क्रिस्टल के माध्यम से तब तक चल सकती है जब तक कि यह एक कण परिसीमा (दो क्रिस्टल के बीच की सीमा) तक नहीं पहुंच जाती। जब यह कण परिसीमा तक पहुंच जाता है, तो डिस्लोकेशन विलुप्त हो जाएगी। उस स्थिति में पूरा क्रिस्टल कुछ कट जाता है (संदर्भ की आवश्यकता है)। हालाँकि ऐसे अलग-अलग तरीके हैं जिनसे किसी डिस्लोकेशन की गति को धीमा या रोका जा सकता है। जब कोई डिस्लोकेशन कई अलग-अलग सर्पी तलों के साथ चलती है, तो कुछ सामग्रियों की एनिसोट्रॉपी के कारण, इन विभिन्न तलों में इसका वेग अलग-अलग हो सकता है। डिस्लोकेशनओं के कारण क्रिस्टल में अन्य दोष, जैसे अन्य डिस्लोकेशन या बिंदु दोष, भी आ सकते हैं। ऐसे स्थितियों में डिस्लोकेशन का एक भाग धीमा हो सकता है या पूरी तरह से चलना बंद कर सकता है।
मिश्रधातु डिज़ाइन में इस प्रभाव का प्रयोग काफी हद तक किया जाता है। लोहे में असमान परमाणु या चरण, जैसे कि थोड़ी मात्रा में कार्बन, जोड़ने पर यह दृढ़ हो जाता है, जिसका अर्थ है कि सामग्री का विरूपण अधिक कठिन होगा (सामग्री दृण हो जाती है)। लोहे के क्रिस्टल जाली में कार्बन परमाणु अंतरालीय कणों (बिंदु दोष) के रूप में कार्य करते हैं, और डिस्लोकेशन पहले की तरह सरलता से गमन हेतु समर्थित नहीं हो सकती है।
डिस्लोकेशन का आरोहण (क्लाइंब) और पुनर्प्राप्ति
डिस्लोकेशन्स क्रिस्टल जाल में डिस्लोकेशन हैं, जो उष्मागतिकी दृष्टिकोण से देखा गया है कि प्रणाली में मुक्त ऊर्जा की मात्रा बढ़ाते हैं। इसलिए, एक क्रिस्टल के वे हिस्से जिनमें अधिक डिस्लोकेशन्स हैं, वे समापनी होंगे। पुनर्क्रिस्टलीकरण के द्वारा, क्रिस्टल खुद को ठीक कर सकता है। क्रिस्टल संरचना का पुनर्प्राप्ति इस प्रकार भी हो सकती है जब दो विपरीत परिस्थिति वाली डिस्लोकेशन्स एक दूसरे से मिलती हैं।
एक डिस्लोकेशन जिसे किसी बाधा (एक बिंदु दोष) द्वारा रोक दिया गया है, वह बाधा को पार कर सकती है और डिस्लोकेशन क्लाइंब नामक प्रक्रिया द्वारा फिर से चलना प्रारम्भ कर सकती है। डिस्लोकेशन पर चढ़ने के लिए, रिक्तियों को क्रिस्टल के माध्यम से स्थानांतरित करने में सक्षम होना चाहिए। जब कोई रिक्ति उस स्थान पर आती है जहां डिस्लोकेशन फंसी हुई है तो यह डिस्लोकेशन को उसके सर्पी समतल से बाहर चढ़ने का कारण बन सकती है, जिसके बाद बिंदु दोष उसके रास्ते में नहीं रह जाता है। इसलिए डिस्लोकेशन का बढ़ना रिक्ति प्रसार के वेग पर निर्भर करता है। सभी प्रसार प्रक्रियाओं की तरह, यह अत्यधिक तापमान पर निर्भर करता है। उच्च तापमान पर डिस्लोकेशन बाधाओं के आसपास अधिक सरलता से घूमने में सक्षम होंगी। इस कारण से, उच्च तापमान पर कई दृढ़ सामग्रियां तेजी से दुर्बल हो जाती हैं।
निकाय में मुक्त ऊर्जा को कम करने के लिए, डिस्लोकेशनएँ स्वयं को कम ऊर्जा वाले क्षेत्रों में केंद्रित करती हैं, इसलिए अन्य क्षेत्र डिस्लोकेशनओं से मुक्त होंगे। इससे क्रिस्टल में 'डिस्लोकेशन दीवारों' या समतलों का निर्माण होता है, जहां डिस्लोकेशन स्थानीयकृत होती हैं। किनारे की डिस्लोकेशन ट्विस्ट वाल्स का निर्माण करती हैं,[4] जबकि स्क्रू डिस्लोकेशन मोड़ वाली दीवारों का निर्माण करती हैं। दोनों स्थितियों में, दीवार में डिस्लोकेशनओं के बढ़ते स्थानीयकरण से दीवार के दोनों किनारों पर क्रिस्टल जाली के उन्मुखीकरण के बीच का कोण बढ़ जाएगा। इससे उपकण का निर्माण होता है। इस प्रक्रिया को सबग्रेन रोटेशन (एसजीआर) कहा जाता है और जब डिस्लोकेशन की दीवार एक नई कण परिसीमा बन जाती है, तो अंततः नए कण का निर्माण हो सकता है।
गतिकी
सामान्यतः चरण 2 क्रीप के लिए शक्ति नियम है:
जहां तनाव चरघातांक है और क्रीप सक्रियण ऊर्जा है, आदर्श गैस स्थिरांक है, तापमान है, और एक तंत्र-निर्भर स्थिरांक है।
चरघातांक क्रीप की क्रियाविधि द्वारा प्रदर्शित तनाव-निर्भरता की डिग्री का वर्णन करता है। विसरणी (डिफ्यूज़नल) क्रीप 1 से 2 का , क्लाइंब-नियंत्रित क्रीप 3 से 5 का और सर्पी-नियंत्रित क्रीप 5 से 7 का प्रदर्शित करता है।
डिस्लोकेशन सर्पी
डिस्लोकेशन सर्पी क्रीप की दर को डिस्लोकेशन गति की दर के लिए अरहेनियस समीकरण का उपयोग करके निर्धारित किया जा सकता है। फॉरवर्ड रेट को इस प्रकार लिखा जा सकता है:
जहां अवरोध की ऊर्जा है और लागू तनाव और थर्मल ऊर्जा द्वारा प्रदान किया गया कार्य है जो डिस्लोकेशन को अवरोध को पार करने में सहयता प्रदान करता है। बोल्ट्जमान स्थिरांक है और निकाय का तापमान है।
इसी प्रकार, पश्चगामी दर निम्न द्वारा दी गई है:
कुल क्रीप दर इस प्रकार है:
इस प्रकार, डिस्लोकेशन सर्पी के कारण क्रीप दर है:
निम्न तापमान पर यह व्यंजक निम्न मे परिवर्तित हो जाता है:
डिस्लोकेशन के लिए आपूर्ति की गई ऊर्जा है:
जहां लागू तनाव है, बर्गर्स सदिश है, और स्लिप समतल का क्षेत्र है। इस प्रकार, विस्थापन सर्पी की दर के लिए समग्र व्यंजक को इस प्रकार फिर से लिखा जा सकता है:
अंश तनाव से आने वाली ऊर्जा है और हर तापीय ऊर्जा है।[2] यह व्यंजक एक ऐसे मॉडल से ली गई है जिससे प्लास्टिक स्ट्रेन परमाणु प्रसार से विकसित नहीं होता है।[2]
क्रीप की दर को आंतरिक सक्रियण ऊर्जा () और तनाव-सहायक ऊर्जा () और तापीय ऊर्जा () के अनुपात द्वारा परिभाषित किया गया है। जैसे-जैसे यह अनुपात बढ़ता है, क्रीप की दर बढ़ती है, या जैसे-जैसे तनाव-सहायता वाली ऊर्जा थर्मल ऊर्जा से अधिक बढ़ती है। सभी क्रीप दर व्यंजकों में समान पद होते हैं, लेकिन आंतरिक सक्रियण ऊर्जा या तनाव-सहायता ऊर्जा पर निर्भरता की ताकत (अर्थात 44 घातांक) क्रीप तंत्र के साथ भिन्न होती है।
डिस्लोकेशन और विसरणी प्रवाह द्वारा क्रीप
क्रीप तंत्र जिसमें डिस्लोकेशन क्रीप और विसरणी क्रीप दोनों सम्मिलित हैं, उनमें सॉल्यूट-ड्रैग क्रीप, डिस्लोकेशन क्लाइंब-सर्पी क्रीप और हार्पर-डोर्न क्रीप सम्मिलित हैं।
सॉल्यूट-ड्रैग क्रीप
विलेय-ड्रैग क्रीप क्रकचित प्रवाह की विशेषता है[2] और सामान्यतः धातु मिश्र धातुओं में देखा जाता है जो कम समय के क्रीप वाले व्यवहार को प्रदर्शित नहीं करते हैं - स्थिर स्थिति तक पहुंचने से पहले क्षणिक क्रीप के दौरान इन सामग्रियों की क्रीप की दर बढ़ जाती है।[2]
ठोस-समाधान सुदृढ़ीकरण के समान, विलेय परमाणुओं और डिस्लोकेशनओं के बीच आकार के बेमेल पैरामीटर के परिणामस्वरूप डिस्लोकेशन गति पर प्रतिबंध लग जाता है। निम्न तापमान पर, विलेय परमाणुओं में चलने के लिए पर्याप्त ऊर्जा नहीं होती है। हालाँकि, उच्च तापमान पर, घुलनशील परमाणु गतिशील हो जाते हैं और क्रीप में योगदान करते हैं।
विलेय ड्रैग क्रीप तब होता है जब एक डिस्लोकेशन एक विलेय परमाणु से अलग हो जाती है, इसके बाद विलेय परमाणु डिस्लोकेशन को "पकड़" लेता है। डिस्लोकेशन मूल रूप से विलेय परमाणुओं द्वारा अपनी जगह पर टिकी रहती हैं। कुछ प्रारंभिक ऊर्जा इनपुट के बाद, डिस्लोकेशन दूर हो जाती है और वेग के साथ चलना प्रारम्भ हो जाती है। यह तनाव दर, है:
जहां विस्थापन घनत्व है, बर्गर सदिश है, और डिस्लोकेशन का औसत वेग है।
जब डिस्लोकेशन का वेग बहुत अधिक नहीं होता है (या क्रीप की दर बहुत अधिक नहीं होती है), तो विलेय परमाणु डिस्लोकेशनओं का अनुसरण कर सकता है, और इस प्रकार डिस्लोकेशन गति पर "खींच" ला सकता है। एक उच्च विसरणशीलता ड्रैग को कम करती है, और अधिक मिसफिट पैरामीटर विलेय परमाणु और डिस्लोकेशन के बीच अधिक बाध्यकारी ऊर्जा को जन्म देते हैं, जिसके परिणामस्वरूप ड्रैग में वृद्धि होती है। अंत में, विलेय की सांद्रता बढ़ाने से कर्षण प्रभाव बढ़ता है। इस प्रकार वेग का वर्णन इस प्रकार किया जा सकता है:
जहां आकार अनुपयुक्त पैरामीटर है और विलेय की सांद्रता है।[2]
जैसे-जैसे तनाव लागू होता है, डिस्लोकेशन का वेग तब तक बढ़ जाता है जब तक कि डिस्लोकेशन विलेय परमाणुओं से अलग नहीं हो जाती। फिर, जैसे-जैसे डिस्लोकेशन दूर हो रही है, तनाव कम होना प्रारम्भ हो जाता है, इसलिए डिस्लोकेशन का वेग कम हो जाता है। इससे विलेय परमाणुओं को विस्थापन तक पहुंचने की अनुमति मिलती है, जिससे तनाव एक बार फिर बढ़ जाता है। फिर तनाव बढ़ जाता है, और चक्र फिर से प्रारम्भ हो जाता है, जिसके परिणामस्वरूप तनाव-तनाव आरेख में क्रकचित दरारें दिखाई देती हैं। यह घटना पोर्टेविन-ले चैटेलियर प्रभाव है और इसे केवल सीमित तनाव-दर स्थितियों में देखा जाता है। यदि तनाव की दर काफी अधिक है, तो प्रवाह तनाव टूटने वाले तनाव से अधिक है, और डिस्लोकेशन चलती रहती है और विलेय परमाणु "पकड़" नहीं सकता है; इस प्रकार, क्रकचित प्रवाह नहीं मनाया जाता है।
यह भी ज्ञात है कि , जिसका तात्पर्य डिस्लोकेशन गुणन से है (तनाव में वृद्धि से डिस्लोकेशन घनत्व बढ़ जाता है)। इस प्रकार, विलेय ड्रैग क्रीप दर को फिर से इस प्रकार लिखा जा सकता है:
जहां यह ध्यान दिया जाता है कि प्रसार गुणांक तापमान का एक कार्य है। यह व्यंजक घातांक के साथ ऊपर क्रीप के लिए शक्ति नियम से मिलती जुलती है।
डिस्लोकेशन क्लाइंब-सर्पी क्रीप
डिस्लोकेशन क्लाइंब-सर्पी क्रीप उन सामग्रियों में देखा जाता है जो स्थिर-अवस्था क्रीप दर की तुलना में उच्च प्रारंभिक क्रीप दर प्रदर्शित करते हैं।[2]
जब तक वे किसी बाधा तक नहीं पहुंच जाते तब तक डिस्लोकेशन एक फिसलन वाले तल के साथ-साथ चलती रहती हैं। लागू तनाव बाधा को दूर करने के लिए डिस्लोकेशन के लिए पर्याप्त नहीं है, लेकिन डिस्लोकेशन के लिए प्रसार के माध्यम से समानांतर स्लिप तल पर चढ़ने के लिए यह पर्याप्त है। यह संकल्पनात्मक रूप से उच्च तापमान क्रॉस स्लिप के समान है, जहां डिस्लोकेशन कम तापमान पर क्लाइंब के माध्यम से बाधाओं को दूर करती हैं। डिस्लोकेशन की गति में चढ़ना और सरकना सम्मिलित है, इसलिए इसे क्लाइम्ब-सर्पी क्रीप नाम दिया गया है।
दर क्लाइंब और सरकने की प्रक्रियाओं की धीमी (निम्न वेग) द्वारा निर्धारित की जाती है, इस प्रकार क्रीप की दर प्रायः क्लाइंब दर से निर्धारित होती है।
सामान्य तनाव दर प्रपत्र से प्रारंभ करना:
जहां विस्थापन घनत्व है और डिस्लोकेशन सर्पी वेग है। डिस्लोकेशन का सर्पी वेग डिस्लोकेशन क्लाइंब के वेग से अधिक है, . क्लाइंब और फिसलन इस व्यंजक के माध्यम से संबंधित हैं:
- जहां
वह दूरी है जो स्लिप समतल में विसर्पण करती है और समानांतर स्लिप समतल के बीच पृथकत्व होता है।
एक मॉडल पर विचार करते हुए जिसमें एक स्रोत द्वारा डिस्लोकेशन उत्सर्जित होती हैं, चरण I से चरण II क्रीप तक निरंतर सूक्ष्म संरचना विकास को बनाए रखने के लिए, प्रत्येक स्रोत निरंतर संख्या में डिस्लोकेशन लूप से जुड़ा होता है जो उसने उत्सर्जित किया है। इस प्रकार, डिस्लोकेशनओं का उत्सर्जन केवल तभी जारी रह सकता है जब कुछ को नष्ट कर दिया जाए। क्लाइंब के माध्यम से विनाश संभव है, जिसके परिणामस्वरूप लूप के किनारों के बीच बड़े पैमाने पर स्थानांतरण (अर्थात या तो रिक्तियों को हटाना, जिसके परिणामस्वरूप परमाणुओं का जुड़ाव होता है, या इसके विपरीत) होता है।[2]
यह मानते हुए कि प्रति इकाई आयतन में डिस्लोकेशन स्रोत हैं, डिस्लोकेशन को औसत लूप व्यास के संदर्भ में फिर से लिखा जा सकता है, क्लाइंब-सर्पी क्रीप की दर है:
चूँकि इन चरणों के बीच संक्रमण के लिए सूक्ष्म संरचना स्थिर रहनी चाहिए, स्थिर रहता है. इस प्रकार, इसे प्रति स्रोत आयतन से गुणा किया जा सकता है और यह स्थिर बना रह सकता है . क्लाइंब-सर्पी क्रीप की दर के लिए व्यंजक कम हो जाती है:
जैसा कि डिस्लोकेशन की क्लाइंब तनाव से प्रेरित होती है लेकिन प्रसार द्वारा पूरी होती है, हम कह सकते हैं जहाँ जाली प्रसार स्थिरांक है। इसके सामान्यीकृत रूप में व्यक्त किया जा सकता है, , जहाँ परमाणु आयतन है।
इस प्रकार, डिस्लोकेशन क्लाइंब-सर्पी क्रीप की दर को निम्नानुसार व्यक्त किया जा सकता है:
जहां एक स्थिरांक है जो लूप ज्यामिति के विवरण को समाहित करता है।[2] उच्च तनाव स्तर पर, एक महीन सूक्ष्म संरचना देखी जाती है, जो और के बीच व्युत्क्रम संबंध से संबंधित होती है। यदि तनाव से स्वतंत्र है, जो अभी तक नहीं दिखाया गया है, तो इस डिस्लोकेशन क्रीप के लिए प्रतिपादक 4.5 है।[2]
हार्पर-डोर्न क्रीप
हार्पर-डॉर्न क्रीप एक क्लाइंब नियंत्रित क्रीप तंत्र है। कम तनाव पर, कम प्रारंभिक डिस्लोकेशन घनत्व वाली सामग्री डिस्लोकेशन से अकेले चढ़ सकती है। हार्पर-डोर्न क्रीप को स्थिर तापमान पर तनाव के साथ एक रैखिक स्थिर-अवस्था तनाव दर संबंध की विशेषता है और यह कण के आकार से स्वतंत्र है, और सक्रियण ऊर्जाएं जो सामान्यतः जाली प्रसार के लिए अपेक्षित लोगों के करीब होती हैं।[5] हार्पर-डॉर्न क्रीप की दर का वर्णन इस प्रकार किया जा सकता है:
जहाँ क्रीप की दर है, डिस्लोकेशन घनत्व है, भौतिक विसरणशीलता है, अपरूपण गुणांक है, बर्गर सदिश है, बोल्ट्ज़मैन स्थिरांक है, तापमान है, और अनुप्रयुक्त तनाव है. हार्पर-डोर्न क्रीप में, डिस्लोकेशन घनत्व नियत है।[6]
यह भी देखें
- क्रीप (विरूपण)
- प्रसार क्रीप
- डिस्लोकेशन
टिप्पणियाँ
- ↑ Twiss & Moores (2000), p. 396
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Courtney, Thomas H. (2000). सामग्रियों का यांत्रिक व्यवहार (2nd ed.). Boston: McGraw Hill. ISBN 0070285942. OCLC 41932585.
- ↑ Twiss & Moores (2000), pp. 395–396
- ↑ Poirier (1976)
- ↑ Kumar, Praveen, Michael E. Kassner, and Terence G. Langdon. "Fifty years of Harper–Dorn creep: a viable creep mechanism or a Californian artifact?." Journal of materials science 42.2 (2007): 409–420.
- ↑ Mohamed, F. A.; Murty, K. L.; Morris, J. W. (1973-04-01). "अल, पंजाब और एसएन में हार्पर-डॉर्न क्रीप". Metallurgical Transactions (in English). 4 (4): 935–940. Bibcode:1973MT......4..935M. doi:10.1007/BF02645593. ISSN 1543-1916. S2CID 137369205.
साहित्य
- Poirier, J.P.; 1976: क्रिस्टलीय ठोस पदार्थों की उच्च तापमान प्लास्टिसिटी, आइरोल्स, पेरिस।
- Twiss, R.J. & Moores, E.M., 2000: स्ट्रक्चरल जियोलॉजी, डब्ल्यू.एच. फ्रीमैन एंड कंपनी (छठा संस्करण), ISBN 0-7167-2252-6
श्रेणी: सातत्य यांत्रिकी श्रेणी:क्रिस्टलोग्राफिक दोष