गणितीय भौतिकी में, गामा मैट्रिक्स, जिसे डायराक मैट्रिक्स (आव्यूह) भी कहा जाता है, विशिष्ट एंटीकम्यूटेशन संबंधों के साथ पारंपरिक मैट्रिक्स का एक समुच्चय है जो सुनिश्चित करता है कि वे क्लिफोर्ड बीजगणित का मैट्रिक्स प्रतिनिधित्व उत्पन्न करते हैं जो कि उच्च-आयामी को परिभाषित करना भी संभव है जिसमे गामा मैट्रिक्स. जब मिन्कोव्स्की अंतरिक्ष में कॉन्ट्रावेरिएंट सदिश के लिए ऑर्थोगोनल आधार सदिश के एक समुच्चय की कार्रवाई के मैट्रिक्स के रूप में व्याख्या की जाती है, तो स्तम्भ सदिश जिस पर मैट्रिक्स कार्य करते हैं, स्पिनरों का एक स्थान बन जाता है, जिस पर स्पेसटाइम का क्लिफोर्ड बीजगणित कार्य करता है। यह बदले में अनंत छोटे स्थानिक घुमावों और लोरेंत्ज़ बूस्ट का प्रतिनिधित्व करना संभव बनाता है। स्पिनर सामान्य रूप से स्पेसटाइम गणना की सुविधा प्रदान करते हैं, और विशेष रूप से सापेक्ष स्पिन कणों के लिए डिराक समीकरण के लिए मौलिक हैं। गामा मैट्रिसेस की प्रारंभ 1928 में डिराक द्वारा की गई थी।[1][2]
डिराक आधार में, सदिश गामा मैट्रिक्स के चार सहप्रसरण और विरोधाभास हैं
समय-सदृश, हर्मिटियन मैट्रिक्स है। अन्य तीन अंतरिक्ष-जैसी, हर्मिटियन विरोधी मैट्रिक्स हैं। अधिक संक्षिप्त रूप से, और जहां क्रोनकर उत्पाद को दर्शाता है और (के लिए j = 1, 2, 3) पाउली मैट्रिसेस को दर्शाता है।
इसके अतिरिक्त , समूह सिद्धांत की विचार के लिए पहचान मैट्रिक्स (I) को कभी-कभी चार गामा मैट्रिक्स के साथ सम्मिलित किया जाता है, और नियमित गामा मैट्रिक्स के साथ संयोजन में सहायक, पांचवां ट्रेस (रैखिक बीजगणित) मैट्रिक्स का उपयोग किया जाता है
पांचवां मैट्रिक्स चार के मुख्य समूह का उचित सदस्य नहीं है; इसका उपयोग नाममात्र बाएँ और दाएँ चिरलिटी (भौतिकी) को अलग करने के लिए किया जाता है।
गामा मैट्रिक्स में समूह संरचना होती है, यह उच्च-आयामी गामा मैट्रिक्स, जो कि मीट्रिक के किसी भी हस्ताक्षर के लिए, किसी भी आयाम में समूह के सभी मैट्रिक्स प्रतिनिधित्व द्वारा साझा की जाती है। उदाहरण के लिए, 2×2 पाउली मैट्रिसेस यूक्लिडियन हस्ताक्षर (3,0) की मीट्रिक के साथ तीन आयामी अंतरिक्ष में गामा मैट्रिसेस का समुच्चय है। पांच स्पेसटाइम आयामों में, ऊपर दिए गए चार गामा, नीचे प्रस्तुत किए जाने वाले पांचवें गामा-मैट्रिक्स के साथ मिलकर क्लिफोर्ड बीजगणित उत्पन्न करते हैं।
क्लिफोर्ड बीजगणित उत्पन्न करने के लिए गामा मैट्रिक्स के लिए परिभाषित गुण एंटीकम्यूटेशन संबंध है
जहां मध्यम कोष्ठक एंटीकम्यूटेटर का प्रतिनिधित्व करते हैं, हस्ताक्षर (+ − − −) के साथ मिंकोव्स्की मीट्रिक है, और 4 × 4 पहचान मैट्रिक्स है।
यह परिभाषित करने वाली गुण गामा मैट्रिक्स के विशिष्ट प्रतिनिधित्व में उपयोग किए जाने वाले संख्यात्मक मानों से अधिक मौलिक है। सदिश गामा मैट्रिक्स के सहप्रसरण और विरोधाभास को परिभाषित किया गया है
ध्यान दें कि मीट्रिक के लिए अन्य संकेत परिपाटी, (− + + +) या तो परिभाषित समीकरण में परिवर्तन की आवश्यकता है:
या सभी गामा आव्यूहों का गुणन , जो निश्चित रूप से उनके धर्मोपदेश गुणों को परिवर्तित होता है जिनका विवरण नीचे दिया गया है। मीट्रिक के लिए वैकल्पिक चिह्न परिपाटी के अनुसार सहसंयोजक गामा मैट्रिक्स को फिर परिभाषित किया जाता है
भौतिक संरचना
स्पेसटाइम V पर क्लिफोर्ड बीजगणित को V से स्वयं, अंत (V) तक वास्तविक रैखिक ऑपरेटरों के समुच्चय के रूप में माना जा सकता है, या अधिक सामान्यतः, जब किसी भी चार-आयामी से रैखिक ऑपरेटरों के समुच्चय के रूप में End(V) तक सम्मिश्र किया जाता है अपने आप में सम्मिश्र सदिश स्थान। अधिक सरलता से, V के लिए आधार दिया जाए तो, सभी 4×4 सम्मिश्र आव्यूहों का समुच्चय है, किन्तु क्लिफोर्ड बीजगणित संरचना से संपन्न है। स्पेसटाइम को मिन्कोव्स्की मीट्रिक ημν से संपन्न माना जाता है। लोरेंत्ज़ समूह के बिस्पिनर्स प्रतिनिधित्व से संपन्न, स्पेसटाइम में हर बिंदु पर बिस्पिनर्स का एक स्थान, यूएक्स भी माना जाता है। स्पेसटाइम में किसी भी बिंदु x पर मूल्यांकन किए गए डिराक समीकरणों के बिस्पिनर क्षेत्र Ψ, Ux के अवयव हैं (नीचे देखें)। माना जाता है कि क्लिफोर्ड बीजगणित Ux पर भी कार्य करता है (सभी x के लिए Uxमें स्तम्भ सदिश Ψ(x) के साथ मैट्रिक्स गुणन द्वारा)। यह इस अनुभाग में के अवयवों का प्राथमिक दृश्य होगा।
Ux के प्रत्येक रैखिक परिवर्तन S के लिए, में E के लिए S E S−1 द्वारा दिए गए End(Ux) का एक परिवर्तन होता है यदि S लोरेंत्ज़ समूह के प्रतिनिधित्व से संबंधित है, तो प्रेरित क्रिया E ↦ S E S−1 भी होगी लोरेंत्ज़ समूह के प्रतिनिधित्व से संबंधित हैं, लोरेंत्ज़ समूह का प्रतिनिधित्व सिद्धांत देखें।
यदि S(Λ)V पर कार्य करने वाले मानक (4 सदिश) प्रतिनिधित्व में एक इच्छित लोरेंत्ज़ परिवर्तन Λ के Ux पर अभिनय करने वाला बिस्पिनर प्रतिनिधित्व है, तो समीकरण द्वारा दिए गएपर एक संबंधित ऑपरेटर है:
यह दर्शाता है कि γμ की मात्रा को क्लिफोर्ड बीजगणित के अंदर बैठे लोरेंत्ज़ समूह के 4 सदिश प्रतिनिधित्व के प्रतिनिधित्व स्थान के आधार के रूप में देखा जा सकता है। अंतिम पहचान को अनिश्चित ऑर्थोगोनल समूह से संबंधित मैट्रिक्स के लिए परिभाषित संबंध के रूप में पहचाना जा सकता है, जो कि अनुक्रमित संकेतन में लिखा गया है। इसका अर्थ है कि फॉर्म की मात्राएँ
जोड़-तोड़ में 4 सदिश के रूप में माना जाना चाहिए। इसका यह भी अर्थ है कि किसी भी 4 सदिश की तरह मीट्रिक ημν का उपयोग करके सूचकांकों को γ पर बढ़ाया और घटाया जा सकता है। संकेतन को फेनमैन स्लैश संकेतन कहा जाता है। स्लैश ऑपरेशन V के आधार eμ या किसी 4 आयामी सदिश स्पेस को सदिश γμके आधार पर मैप करता है। घटाई गई मात्राओं के लिए परिवर्तन नियम सरल है
किसी को ध्यान देना चाहिए कि यह γμ के परिवर्तन नियम से अलग है, जिसे अब (निश्चित) आधार सदिश के रूप में माना जाता है। साहित्य में कभी-कभी पाया जाने वाला 4 सदिश के रूप में 4 टुपल का पदनाम थोड़ा गलत नाम है। बाद वाला परिवर्तन आधार γμ के संदर्भ में एक कटी हुई मात्रा के घटकों के सक्रिय परिवर्तन से मेल खाता है, और पूर्व, आधार γμ के निष्क्रिय परिवर्तन से मेल खाता है।
अवयव लोरेंत्ज़ समूह के लाई बीजगणित का प्रतिनिधित्व करते हैं। यह एक स्पिन प्रतिनिधित्व है. जब इन आव्यूहों और उनके रैखिक संयोजनों को घातांकित किया जाता है, तो वे लोरेंत्ज़ समूह के द्विस्पिनर निरूपण होते हैं, उदाहरण के लिए, उपरोक्त का S(Λ) इस रूप का होता है। 6 आयामी स्थान σμν स्पैन लोरेंत्ज़ समूह के टेंसर प्रतिनिधित्व का प्रतिनिधित्व स्थान है। सामान्य रूप से क्लिफोर्ड बीजगणित के उच्च क्रम के अवयवों और उनके परिवर्तन नियमों के लिए, लेख डिराक बीजगणित देखें। लोरेंत्ज़ समूह का स्पिन प्रतिनिधित्व स्पिन समूह स्पिन(1,3) (वास्तविक, अनावेशित स्पिनरों के लिए) और सम्मिश्र स्पिन समूह स्पिन(1,3) में आवेशित (डिराक) स्पिनरों के लिए एन्कोड किया गया है।
चार गामा मैट्रिक्स के उत्पाद को के रूप में परिभाषित करना उपयोगी है, जिससे
(डिराक आधार पर)।
चूँकि गामा अक्षर का उपयोग करता है, यह के गामा मैट्रिक्स में से एक नहीं है सूचकांक संख्या 5 पुराने अंकन का अवशेष है: को "" कहा जाता था।
इसका वैकल्पिक रूप भी है:
परिपाटी का उपयोग करना या
परिपाटी का उपयोग करना
प्रमाण :
इसे इस तथ्य का लाभ उठाकर देखा जा सकता है कि सभी चार गामा मैट्रिक्स एंटीकम्यूट हैं
जहां 4 आयामों में प्रकार (4,4) सामान्यीकृत क्रोनेकर डेल्टा है, पूर्ण एंटीसिमेट्राइज़ेशन में। यदि लेवी-सिविटा प्रतीक को एन आयामों में दर्शाता है, तो हम पहचान का उपयोग कर सकते हैं। फिर परिपाटी का उपयोग करते हुए हमें प्राप्त होता है।
यह मैट्रिक्स क्वांटम मैकेनिकल चिरैलिटी (भौतिकी) की विचार में उपयोगी है। उदाहरण के लिए, डिराक क्षेत्र को इसके बाएं हाथ और दाएं हाथ के घटकों पर प्रक्षेपित किया जा सकता है:
कुछ गुण हैं:
यह हर्मिटियन है:
इसका आइजेनवैल्यू ±1 है, क्योंकि:
यह चार गामा मैट्रिक्स के साथ एंटीकम्यूट करता है:
वास्तव में, और के आइजेनसदिश हैं तब से
और
पाँच आयाम
विषम आयामों में क्लिफोर्ड बीजगणित एक कम आयाम की क्लिफोर्ड बीजगणित की दो प्रतियों की तरह व्यवहार करता है, एक बायीं प्रति और एक दाहिनी प्रति।[3] इस प्रकार, पांच आयामों में क्लिफोर्ड बीजगणित के जनरेटर में से एक के रूप में i γ 5को पुन: उपयोग करने के लिए कोई एक विधि अपना सकता है। इस स्थिति में, समुच्चय {γ 0, γ 1, γ 2, γ 3, i γ 5}इसलिए, अंतिम दो गुणों द्वारा (यह ध्यान में रखते हुए कि i 2 ≡ −1) और 'पुराने' गामा के, मीट्रिक हस्ताक्षर (1,4) के लिए 5 स्पेसटाइम आयामों में क्लिफोर्ड बीजगणित का आधार बनता है।[lower-alpha 1] मीट्रिक हस्ताक्षर (4,1) में, समुच्चय {γ 0, γ 1, γ 2, γ 3, γ 5} का उपयोग किया जाता है, जहां γμ(3,1) हस्ताक्षर के लिए उपयुक्त हैं।[lower-alpha 2] यह पैटर्न स्पेसटाइम आयाम 2n सम के लिए और अगले विषम आयाम 2n + 1 सभी n ≥ 1 के लिए दोहराया जाता है।[6] अधिक विवरण के लिए, उच्च-आयामी गामा मैट्रिक्स देखें।
पहचान
निम्नलिखित पहचान मौलिक एंटीकम्यूटेशन संबंध से अनुसरण करती हैं, इसलिए वे किसी भी आधार पर टिके रहते हैं (चूँकि अंतिम के लिए संकेत विकल्प पर निर्भर करता है।
विविध पहचान
1.
प्रमाण
Take the standard anticommutation relation:
One can make this situation look similar by using the metric :
( symmetric)
(expanding)
(relabeling term on right)
2.
प्रमाण
Similarly to the प्रमाण of 1, again beginning with the standard commutation relation:
3.
प्रमाण
To show
Use the anticommutator to shift to the right
Using the relation we can contract the last two gammas, and get
Finally using the anticommutator identity, we get
4.
प्रमाण
(anticommutator identity)
(using identity 3)
(raising an index)
(anticommutator identity)
(2 terms cancel)
5.
प्रमाण
If then and it is easy to verify the identity. That is the case also when , or .
On the other hand, if all three indices are different, , and and both sides are completely antisymmetric; the left hand side because of the anticommutativity of the matrices, and on the right hand side because of the antisymmetry of . It thus suffices to verify the identities for the cases of , , and .
6. जहाँ
प्रमाण
For and both sides vanish. Otherwise, multiplying identity 5 by from the right gives that
(raising indices and using identity 1)
where since . The left hand side of this equation also vanishes since by property 3. Rearranging gives that
(since anticommutes with the gamma matrices)
Note that for (for , vanishes) by the standard anticommutation relation. It follows that
Multiplying from the left times and using that yields the desired result.
पहचान का पता लगाएं
गामा मैट्रिक्स निम्नलिखित ट्रेस पहचान का पालन करते हैं:
Trace of any product of an odd number of is zero
Trace of times a product of an odd number of is still zero
उपरोक्त को प्रमाणित करने में ट्रेस (रैखिक बीजगणित) ऑपरेटर के तीन मुख्य गुणों का उपयोग सम्मिलित है:
tr(A + B) = tr(A) + tr(B)
tr(rA) = r tr(A)
tr(ABC) = tr(CAB) = tr(BCA)
प्रमाण of 1
From the definition of the gamma matrices,
We get
or equivalently,
where is a number, and is a matrix.
(inserting the identity and using tr(rA) = r tr(A) .)
(from anti-commutation relation, and given that we are free to select )
(using tr(ABC) = tr(BCA))
(removing the identity)
यह संकेत करता है
प्रमाण of 2
दिखाने के लिए
सबसे पहले उस पर ध्यान दें
हम पांचवें गामा मैट्रिक्स के बारे में दो तथ्यों का भी उपयोग करेंगे जो कहते हैं:
तो आइए पहले गैर-तुच्छ स्थिति के लिए इस पहचान को सिद्ध करने के लिए इन दो तथ्यों का उपयोग करें: तीन गामा मैट्रिक्स का निशान। चरण एक में तीन मूल के सामने की एक जोड़ी रखना है, और चरण दो में चक्रीयता का उपयोग करने के बाद , मैट्रिक्स को मूल स्थिति में वापस स्वैप करना है पता लगाना।
(using tr(ABC) = tr(BCA))
यह तभी पूरा हो सकता है जब
2n + 1 (n पूर्णांक) गामा मैट्रिक्स का विस्तार, ट्रेस में 2n-वें गामा-मैट्रिक्स के बाद (मान लीजिए) दो गामा-5s रखकर, को दाईं ओर ले जाकर (एक ऋण चिह्न देकर) और कम्यूट करके पाया जाता है अन्य गामा-5 2एन बाईं ओर कदम बढ़ाता है [चिह्न परिवर्तन के साथ(-1)^2n = 1].। फिर हम दो गामा-5 को साथ लाने के लिए चक्रीय पहचान का उपयोग करते हैं, और इसलिए वे पहचान के वर्ग में आ जाते हैं, जिससे हमारे पास माइनस के समान ट्रेस अथार्त 0 रह जाता है।
प्रमाण of 3
यदि किसी ट्रेस में विषम संख्या में गामा मैट्रिक्स दिखाई देते हैं , हमारा लक्ष्य आगे बढ़ना है दाईं ओर से बाईं ओर. यह चक्रीय गुण द्वारा ट्रेस को अपरिवर्तनीय छोड़ देगा। इस कदम को करने के लिए, हमें इसे अन्य सभी गामा मैट्रिक्स के साथ एंटीकम्यूट करना होगा। इसका अर्थ यह है कि हम इसे विषम संख्या में बार एंटीकम्यूट करते हैं और ऋण चिह्न चुनते हैं। स्वयं के ऋणात्मक के समान ट्रेस शून्य होना चाहिए।
प्रमाण of 4
दिखाने के लिए
के साथ प्रारंभ ,
प्रमाण of 5
दाईं ओर के पद के लिए, हम स्वैपिंग का पैटर्न जारी रखेंगे बाईं ओर अपने निकतम के साथ,
फिर से, सही स्वैप पर शब्द के लिए बाईं ओर अपने निकतम के साथ,
समीकरण (3) समीकरण (2) के दाईं ओर का पद है, और समीकरण (2) समीकरण (1) के दाईं ओर का पद है। हम शब्दों को सरल बनाने के लिए पहचान संख्या 3 का भी उपयोग करेंगे:
तो अंततः समीकरण (1), जब आप यह सारी जानकारी प्लग इन करते हैं तो देता है
ट्रेस के अंदर के शब्दों को चक्रित किया जा सकता है, इसलिए
तो वास्तव में (4) है
या
|}
प्रमाण of 6
दिखाने के लिए
,
के साथ प्रारंभ
(क्योंकि)
(यात्रा-विरोधी साथ )
(ट्रेस के अंदर शब्दों को घुमाएँ)
(निकालना 's)
जोड़ना देखने के लिए ऊपर के दोनों पक्ष
.
अब, इस पैटर्न का उपयोग दिखाने के लिए भी किया जा सकता है
.
बस दो कारक जोड़ें , साथ से अलग और . बार के अतिरिक्त तीन बार एंटीकम्यूट करें, तीन माइनस चिह्न उठाएं, और ट्रेस की चक्रीय गुण का उपयोग करके चक्र करें।
इसलिए,
.
प्रमाण of 7
पहचान 7 के प्रमाण के लिए, वही विधि अभी भी काम करती है जब तक कि (0123) का कुछ क्रमपरिवर्तन है, जिससे सभी 4 गामा प्रकट होते हैं। एंटीकम्यूटेशन नियमों का तात्पर्य यह है कि दो सूचकांकों को आपस में बदलने से ट्रेस का चिह्न बदल जाता है के आनुपातिक होना चाहिए . आनुपातिकता स्थिरांक है , जैसा कि प्लग इन करके जांचा जा सकता है , लिख रहा हूँ , और याद रखें कि पहचान का निशान 4 है।
प्रमाण of 8
के उत्पाद को निरूपित करें गामा मैट्रिक्स द्वारा हर्मिटियन संयुग्म पर विचार करें :
(गामा मैट्रिक्स को संयुग्मित करने के बाद से नीचे वर्णित अनुसार अपना हर्मिटियन संयुग्म उत्पन्न करता है)
(पहले और आखिरी ड्रॉप आउट को छोड़कर सभी एस)
जिसके साथ जुड़ना दोनों से छुटकारा पाने के लिए बार और वह वहां हैं, हम उसे देखते हैं का विपरीत है . अब,
(चूंकि ट्रेस समानता परिवर्तनों के तहत अपरिवर्तनीय है)
(चूंकि ट्रांसपोज़िशन के अनुसार ट्रेस अपरिवर्तनीय है)
(चूंकि गामा मैट्रिक्स के उत्पाद का निशान वास्तविक है)
सामान्यीकरण
गामा मैट्रिक्स को अतिरिक्त हेर्मिटिसिटी स्थितियों के साथ चुना जा सकता है जो उपरोक्त एंटीकम्यूटेशन संबंधों द्वारा प्रतिबंधित हैं। हम थोप सकते हैं
, के साथ संगत
और अन्य गामा मैट्रिक्स के लिए (के लिए)। k = 1, 2, 3)
, के साथ संगत
कोई तुरंत जाँचता है कि ये साधुता संबंध डिराक प्रतिनिधित्व के लिए मान्य हैं।
उपरोक्त नियमो को संबंध में जोड़ा जा सकता है
क्रिया के अंतर्गत धर्मोपदेश की स्थितियाँ अपरिवर्तनीय नहीं हैं लोरेंत्ज़ परिवर्तन का क्योंकि लोरेंत्ज़ समूह की गैर-संक्षिप्तता के कारण आवश्यक रूप से एकात्मक परिवर्तन नहीं है।
आवेश संयुग्मन
चार्ज संयुग्मन ऑपरेटर को किसी भी आधार पर परिभाषित किया जा सकता है
जहां मैट्रिक्स ट्रांसपोज़ को दर्शाता है। जो स्पष्ट रूप लेता है वह गामा मैट्रिक्स के लिए चुने गए विशिष्ट प्रतिनिधित्व पर निर्भर है (गामा मैट्रिक्स के उत्पाद के रूप में व्यक्त इसका रूप प्रतिनिधित्व पर निर्भर है, जबकि इसे डिराक आधार में देखा जा सकता है:
जो, उदाहरण के लिए, इच्छित चरण कारक तक, मेजराना आधार पर पकड़ बनाने में विफल रहता है। ऐसा इसलिए है क्योंकि यद्यपि चार्ज संयुग्मन उच्च-आयामी गामा मैट्रिक्स का आंतरिक स्वचालितता] है, यह (समूह का) आंतरिक ऑटोमोर्फिज्म नहीं है। संयुग्मी मैट्रिक्स पाए जा सकते हैं, किन्तु वे प्रतिनिधित्व-निर्भर हैं।
प्रतिनिधित्व-स्वतंत्र पहचान में सम्मिलित हैं:
चार्ज संयुग्मन ऑपरेटर भी एकात्मक है, जबकि के लिए यह किसी भी प्रतिनिधित्व के लिए भी रखता है। गामा मैट्रिक्स के प्रतिनिधित्व को देखते हुए, चार्ज संयुग्मन ऑपरेटर के लिए इच्छित चरण कारक भी चुना जा सकता है जैसे कि , जैसा कि नीचे दिए गए चार अभ्यावेदन (डिराक, मेजराना और दोनों चिरल वेरिएंट) के स्थिति में है।
फेनमैन स्लैश नोटेशन
फेनमैन स्लैश संकेतन द्वारा परिभाषित किया गया है
किसी भी 4-सदिश के लिए .
यहां ऊपर दी गई कुछ समान पहचानें दी गई हैं, किन्तु इसमें स्लैश संकेतन सम्मिलित है:
जहाँ लेवी-सिविटा प्रतीक है और वास्तव में विषम संख्या के उत्पादों के निशान शून्य है और इस प्रकार
अनेक लोग गामा मैट्रिक्स के संदर्भ में उपयुक्त पहचान के साथ फॉर्म के स्लैश नोटेशन और संकुचन अभिव्यक्तियों का विस्तार करने से सीधे अनुसरण करते हैं।
अन्य प्रतिनिधित्व
मैट्रिक्स को कभी-कभी 2×2 पहचान मैट्रिक्स, , और का उपयोग करके भी लिखा जाता है
जहां k 1 से 3 तक चलता है और σk पाउली आव्यूह हैं।
डिराक आधार
अब तक हमने जो गामा मैट्रिक्स लिखे हैं, वे डायराक आधार पर लिखे गए डायराक स्पिनरों पर कार्य करने के लिए उपयुक्त हैं; वास्तव में, डिराक आधार को इन आव्यूहों द्वारा परिभाषित किया गया है। संक्षेप में, डिराक आधार पर:
डिराक आधार पर, चार्ज संयुग्मन ऑपरेटर वास्तविक एंटीसिमेट्रिक है,[8]
वेइल (चिरल) आधार
एक अन्य सामान्य विकल्प वेइल या चिरल आधार है, जिसमें किन्तु वही रहता है अलग है, और इसलिए भिन्न भी है, और विकर्ण भी है
या अधिक संक्षिप्त संकेतन में:
हरमन वेइल आधार का लाभ यह है कि इसकी चिरलिटी (भौतिकी) सरल रूप लेती है,
चिरल अनुमानों की निष्क्रियता प्रकट है।
अंकन का थोड़ा दुरुपयोग करके और प्रतीकों का पुन: उपयोग करके फिर हम पहचान सकते हैं
जहाँ हैं और बाएं हाथ और दाएं हाथ के दो-घटक वेइल स्पिनर हैं।
इस आधार पर चार्ज संयुग्मन ऑपरेटर वास्तविक एंटीसिमेट्रिक है,
डिराक आधार को वेइल आधार से प्राप्त किया जा सकता है
चिरैलिटी (भौतिकी) अन्य वेइल पसंद से थोड़ा अलग रूप लेती है,
दूसरे शब्दों में,
जहाँ और पहले की तरह, बाएं हाथ और दाएं हाथ के दो-घटक वेइल स्पिनर हैं।
इस आधार पर आवेश संयुग्मन संचालिका है
यह आधार उपरोक्त डायराक आधार से प्राप्त किया जा सकता है जहाँ एकात्मक परिवर्तन के माध्यम से
मेजोराना आधार
मेजराना स्पिनर आधार भी है, जिसमें सभी डिराक मैट्रिक्स काल्पनिक हैं, और स्पिनर और डिराक समीकरण वास्तविक हैं। पाउली मैट्रिसेस के संबंध में, आधार को इस प्रकार लिखा जा सकता है[8]:
जहाँ चार्ज संयुग्मन मैट्रिक्स है, जो ऊपर परिभाषित डिराक संस्करण से मेल खाता है।
सभी गामा मैट्रिक्स को काल्पनिक बनाने का कारण केवल कण भौतिकी मीट्रिक (+, −, −, −) प्राप्त करना है, जिसमें वर्ग द्रव्यमान सकारात्मक होते हैं। चूँकि, मेजराना प्रतिनिधित्व वास्तविक है। चार घटक वास्तविक स्पिनरों और वास्तविक गामा मैट्रिक्स के साथ एक अलग प्रतिनिधित्व प्राप्त करने के लिए कोई भी का गुणनखंड कर सकता है। को हटाने का परिणाम यह है कि वास्तविक गामा मैट्रिक्स के साथ एकमात्र संभावित मीट्रिक (−, +, +, +) है।
मेजराना आधार को उपरोक्त डायराक आधार से के रूप में एकात्मक परिवर्तन के माध्यम से प्राप्त किया जा सकता है
Cl1,3(C) और Cl1,3(R)
डिराक बीजगणित को वास्तविक बीजगणित Cl1,3() की जटिलता के रूप में माना जा सकता है, जिसे स्पेसटाइम बीजगणित कहा जाता है:
Cl1,3() सीएल से भिन्न है1,3(): Cl1,3() केवल गामा मैट्रिक्स और उनके उत्पादों के वास्तविक रैखिक संयोजन की अनुमति है।
दो बातें ध्यान दिलाने योग्य हैं। क्लिफ़ोर्ड बीजगणित के रूप में, Cl1,3() और सीएल4() समरूपी हैं, क्लिफ़ोर्ड बीजगणित का वर्गीकरण देखें। इसका कारण यह है कि स्पेसटाइम मीट्रिक का अंतर्निहित हस्ताक्षर जटिलता से गुजरने पर अपना हस्ताक्षर (1,3) खो देता है। चूँकि , द्विरेखीय रूप को सम्मिश्र विहित रूप में लाने के लिए आवश्यक परिवर्तन लोरेंत्ज़ परिवर्तन नहीं है और इसलिए स्वीकार्य नहीं है (कम से कम अव्यावहारिक) क्योंकि सभी भौतिकी लोरेंत्ज़ समरूपता से शक्ति से जुड़ी हुई है और इसे प्रकट रखना उत्तम है।
ज्यामितीय बीजगणित के समर्थक जहां भी संभव हो वास्तविक बीजगणित के साथ काम करने का प्रयास करते हैं। उनका तर्क है कि भौतिक समीकरण में काल्पनिक इकाई की उपस्थिति की पहचान करना समान्य रूप से संभव है (और आमरूप से ज्ञानवर्धक)। ऐसी इकाइयाँ वास्तविक क्लिफ़ोर्ड बीजगणित में अनेक मात्राओं में से से उत्पन्न होती हैं, जिसका वर्ग -1 होता है, और बीजगणित के गुणों और इसके विभिन्न उप-स्थानों की परस्पर क्रिया के कारण इनका ज्यामितीय महत्व होता है। इनमें से कुछ प्रस्तावक यह भी सवाल करते हैं कि क्या डिराक समीकरण के संदर्भ में अतिरिक्त काल्पनिक इकाई प्रस्तुत करना आवश्यक या उपयोगी है।[10]
रीमैनियन ज्यामिति के गणित में, क्लिफ़ोर्ड बीजगणित सीएल को परिभाषित करना पारंपरिक हैp,q() इच्छित आयामों के लिए p,q. वेइल स्पिनर स्पिन समूह की कार्रवाई के अनुसार बदल जाते हैं जो कि . स्पिन समूह का जटिलीकरण, जिसे स्पिन समूह कहा जाता है जहाँ , उत्पाद है वृत्त के साथ स्पिन समूह का उत्पाद पहचानने के लिए बस सांकेतिक उपकरण है साथ इसका ज्यामितीय बिंदु यह है कि यह वास्तविक स्पिनर को अलग करता है, जो लोरेंत्ज़ परिवर्तनों के अनुसार सहसंयोजक है। घटक, जिसे इसके साथ पहचाना जा सकता है विद्युत चुम्बकीय संपर्क का फाइबर। h> डायराक कण/एंटी-कण अवस्थाओ (समकक्ष, वेइल आधार में चिरल अवस्थाओ ) से संबंधित करने के लिए उपयुक्त विधि से समता और आवेश संयुग्मन को अस्पष्ट रहा है। बाइस्पिनर, जहां तक इसमें रैखिक रूप से स्वतंत्र बाएं और दाएं घटक हैं, विद्युत चुम्बकीय क्षेत्र के साथ बातचीत कर सकता है। यह मेजराना स्पिनर और ईएलकेओ स्पिनर के विपरीत है, जो ऐसा नहीं कर सकते (अथार्त वे विद्युत रूप से तटस्थ हैं), क्योंकि वे स्पष्ट रूप से स्पिनर को बाधित करते हैं जिससे वे इसके साथ बातचीत न कर सकें। भाग जटिलता से आ रहा है।
चूँकि, भौतिकी में समकालीन अभ्यास में, अंतरिक्ष-समय बीजगणित के अतिरिक्त डिराक बीजगणित मानक वातावरण बना हुआ है जिसमें डिराक समीकरण के स्पिनर रहते हैं।
अन्य प्रतिनिधित्व-मुक्त गुण
गामा आव्यूह आइजेनवैल्यू के साथ विकर्णीय हैं के लिए , और आइजेनवैल्यू के लिए है
प्रमाण
This can be demonstrated for and follows similarly for . We can rewrite
as
By a well-known result in linear algebra, this means there is a basis in which is diagonal with आइजेनवैल्यू .
विशेषकर, इसका तात्पर्य यह है साथ हर्मिटियन और एकात्मक है, जबकि साथ हर्मिटियन विरोधी और एकात्मक हैं।
इसके अतिरिक्त , प्रत्येक आइजेनवैल्यू की बहुलता दो है।
प्रमाण
If is an eigenvector of then is an eigenvector with the opposite eigenvalue.
Then आइजेनसदिश can be paired off if they are related by multiplication by Result follows similarly for
अधिक सामान्यतः, यदि शून्य नहीं है, समान परिणाम रहता है। ठोसता के लिए, हम सकारात्मक मानक स्थिति तक ही सीमित हैं साथ ऋणात्मक स्थिति भी इसी प्रकार है।
प्रमाण
It can be shown
so by the same argument as the first result, is diagonalizable with आइजेनवैल्यू
We can adapt the argument for the second result slightly. We pick a non-null vector which is orthogonal to
Then आइजेनसदिश can be paired off similarly if they are related by multiplication by
यह इस प्रकार है कि समाधान स्थान (अर्थात, बाईं ओर का कर्नेल) का आयाम 2 है। इसका अर्थ है कि डिराक के समीकरण के समतल तरंग समाधान के लिए समाधान स्थान का आयाम 2 है।
यह परिणाम अभी भी द्रव्यमान रहित डिराक समीकरण के लिए प्रयुक्त है। दूसरे शब्दों में, यदि शून्य, फिर शून्यता 2 है .
प्रमाण
If null, then
By generalized आइजेनवैल्यू decomposition, this can be written in some basis as diagonal in Jordan blocks with आइजेनवैल्यू 0, with either 0, 1, or 2 blocks, and other
diagonal entries zero. It turns out to be the 2 block case.
The zero case is not possible as if by linear independence of the we must have But null vectors are
by definition non-zero.
Consider and a zero-eigenvector of .
Note is also null and satisfies
If , then it cannot simultaneously be a zero eigenvector of by (*).
Considering , if we apply then we get
.
Therefore after a rescaling, and give a Jordan block. This gives a pairing. There must be another zero eigenvector of
, which can be used to make the second Jordan block.
There is also a pleasant structure to these pairs. If left arrows correspond to application of , and right arrows to application of , and
is a zero
eigenvector of , up to scalar factors we have
.
यूक्लिडियन डिराक मैट्रिसेस
क्वांटम क्षेत्र सिद्धांत में कोई विक मिन्कोव्स्की अंतरिक्ष से यूक्लिडियन अंतरिक्ष तक पारगमन के लिए समय अक्ष को घुमा सकता है। यह कुछ पुनर्सामान्यीकरण प्रक्रियाओं के साथ-साथ जाली गेज सिद्धांत में विशेष रूप से उपयोगी है। यूक्लिडियन अंतरिक्ष में, डिराक मैट्रिसेस के दो समान्य रूप से उपयोग किए जाने वाले प्रतिनिधित्व हैं:
चिरल प्रतिनिधित्व
ध्यान दें कि के कारक स्थानिक गामा मैट्रिक्स में डाला गया है जिससे यूक्लिडियन क्लिफ़ोर्ड बीजगणित
उभरेगा. यह भी ध्यान देने योग्य है कि इसके ऐसे वेरिएंट भी हैं जो इसके स्थान पर सम्मिलित होते हैं किसी मैट्रिक्स पर, जैसे जाली QCD कोड में जो किरल आधार का उपयोग करते हैं।
यूक्लिडियन अंतरिक्ष में,
एंटी-कम्यूटेटर का उपयोग करना और उसे यूक्लिडियन स्पेस में नोट करना , वह दिखाता है
यूक्लिडियन अंतरिक्ष में चिरल आधार पर,
जो इसके मिन्कोव्स्की संस्करण से अपरिवर्तित है।
गैर-सापेक्षवादी प्रतिनिधित्व
फ़ुटनोट
↑
The set of matrices (Γa) = (γμ, i γ 5 ) with a = (0, 1, 2, 3, 4) satisfy the five-dimensional Clifford algebra {Γa, Γb} = 2 ηab . [4]
↑
The set of matrices (Γa) = (γμ, i γ 5 ) with a = (0, 1, 2, 3, 4) satisfy the five-dimensional Clifford algebra {Γa, Γb} = 2 ηab . [5]
↑Kaplunovsky, Vadim (Fall 2008). "ट्रेसोलोजी"(PDF). Quantum Field Theory (course homework / class notes). Physics Department. University of Texas at Austin. Archived from the original(PDF) on 2019-11-13. Retrieved 2021-11-04.
↑ 8.08.18.2Itzykson, Claude; Zuber, Jean-Bernard (1980). क्वांटम क्षेत्र सिद्धांत. New York, NY: MacGraw-Hill. Appendix A.
Tong, David (2007). Lectures on Quantum Field Theory (course lecture notes). David Tong at University of Cambridge. p. 93. Retrieved 2015-03-07. These lecture notes are based on an introductory course on quantum field theory, aimed at Part III (i.e. masters level) students.
de Wit, B.; Smith, J. (1986). "Appendix E"(PDF). Field Theory in Particle Physics. North-Holland Personal Library. Vol. 1. Utrecht, NL: North-Holland. ISBN978-0444869999. Archived from the original(PDF) on 2016-03-04. Retrieved 2023-02-20 – via Utrecht University.
Hestenes, D. (1996). "Real Dirac theory"(PDF). In Keller, J.; Oziewicz, Z. (eds.). The Theory of the Electron. Cuautitlan, Mexico: UNAM, Facultad de Estudios Superiores. pp. 1–50.
बाहरी संबंध
डिराक matrices on mathworld including their group properties