गेल-मान मैट्रिसेस

From Vigyanwiki

मुर्रे गेल-मैन द्वारा विकसित गेल-मैन मैट्रिसेस, कण भौतिकी में मजबूत परस्परक्रिया के अध्ययन में उपयोग किए जाने वाले आठ रेखीयस्वतंत्र 3×3 मैट्रिक्स ट्रेस हर्मिटियन मैट्रिसेस का एक सेट है। वे परिभाषित प्रतिनिधित्व में SU(3) समूह के लाई बीजगणित का विस्तार करते हैं।

मैट्रिसेस

गुण

ये मैट्रिक्सट्रेसलेस, हर्मिटियन मैट्रिक्स हैं, और अतिरिक्त ट्रेस ऑर्थोनॉर्मलिटी रिलेशन का पालन करते हैं (ताकि वे घातांक के माध्यम से SU(3) के एकात्मक मैट्रिक्स समूह तत्वों को उत्पन्न कर सकें)।[1] इन गुणों को गेल-मैन द्वारा चुना गया था क्योंकि वे तब स्वाभाविक रूप से SU(2) से SU(3) के लिए पाउली मैट्रिक्स को सामान्यीकृत करते थे, जिसने गेल-मैन के क्वार्क मॉडल का आधार बनाया था।[2] गेल-मैन का सामान्यीकरण आगे सामान्य SU(n) तक फैला हुआ है। लाई बीजगणित के मानक आधार से उनके संबंध के लिए, वेइल-कार्टन आधार देखें।

ट्रेस ऑर्थोनोर्मैलिटी

गणित में, ऑर्थोनोर्मैलिटी का तात्पर्य आम तौर पर एक मानदंड से होता है जिसका मान इकाई (1) होता है। हालाँकि, गेल-मैन मैट्रिसेस को 2 के मान पर सामान्यीकृत किया जाता है। इस प्रकार, युग्‍मानूसार उत्पाद के ट्रेस (रैखिक बीजगणित) के परिणामस्वरूप ऑर्थो-नॉर्मलाइज़ेशन की स्थिति होती है

जहाँ क्रोनकर डेल्टा है।

ऐसा इसलिए है कि SU(2) के तीन अंत:स्थापित उपबीजगणित के अनुरूप अंत:स्थापित पाउली मैट्रिसेस पारंपरिक रूप से सामान्यीकृत हैं। इस त्रि-आयामी मैट्रिक्स प्रतिनिधित्व में, कार्टन उपबीजगणित दो मैट्रिक्स के रैखिक संयोजन (वास्तविक गुणांक के साथ) का सेट है और , जो एक दूसरे के साथ आवागमन करते हैं।

तीन महत्वपूर्ण SU(2) उपबीजगणित हैं:

  • और

जहां x और y, और के रैखिक संयोजन हैं। इन उपबीजगणित के SU(2) कासिमिर परस्पर विनिमय करते हैं।

हालाँकि, इन उपबीजगणितों के किसी भी एकात्मक समानता परिवर्तन से SU(2) उपबीजगणित प्राप्त होंगे। ऐसे परिवर्तनों की संख्या अनगिनत है।

संपरिवर्तन संबंध

SU(3) के 8 जनरेटर कम्यूटेशन और एंटी-कम्यूटेशन संबंधों को पूर्ति करते हैं[3]

संरचना स्थिरांक के साथ

संरचना स्थिरांक तीन सूचकांकों में पूरी तरह से प्रतिसममित हैं, जो SU(2) के लेवी-सिविटा प्रतीक की प्रतिसममित को सामान्य बनाते हैं। गेल-मैन मैट्रिसेस के वर्तमान क्रम के लिए वे मान लेते हैं

सामान्य तौर पर, वे शून्य का मूल्यांकन करते हैं, जब तक कि उनमें प्रतिसममित (काल्पनिक) λs के अनुरूप सेट {2,5,7} से सूचकांकों की एक विषम गिनती न हो।

इन कम्यूटेशन संबंधों का उपयोग करते हुए, गेल-मैन मैट्रिसेस के उत्पाद को इस प्रकार लिखा जा सकता है

जहाँ I तत्समक आव्यूह है.

फिर्ज़ पूर्णता संबंध

चूँकि आठ आव्यूह और तत्समक सभी 3×3 आव्यूहों में फैला हुआ पूर्ण ट्रेस-ऑर्थोगोनल सेट है, इसलिए दो फ़िएर्ज़ पूर्णता संबंध, (ली और चेंग, 4.134) खोजना आसान है, जो कि पाउली आव्यूह#पूर्णता के अनुरूप है। संबंध 2. अर्थात्, आठ आव्यूहों का योग करने के लिए बिंदु का उपयोग करना और उनकी पंक्ति/स्तंभ सूचकांकों के लिए ग्रीक सूचकांकों का उपयोग करना, निम्नलिखित तत्समक रखता है,

और

उपरोक्त के रैखिक संयोजन से उत्पन्न पुनर्रचना संस्करण को कोई पसंद कर सकता है,


प्रतिनिधित्व सिद्धांत

मैट्रिक्स की एक विशेष पसंद को समूह प्रतिनिधित्व कहा जाता है, क्योंकि SU(3) के किसी भी तत्व को फॉर्म में लिखा जा सकता है आइंस्टीन संकेतन का उपयोग करते हुए, जहां आठ वास्तविक संख्याएँ और सूचकांक पर एक योग हैं j निहित है. एक प्रतिनिधित्व को देखते हुए, एक समतुल्य एक मनमाना एकात्मक समानता परिवर्तन द्वारा प्राप्त किया जा सकता है, क्योंकि इससे कम्यूटेटर अपरिवर्तित रहता है।

मैट्रिक्स को लाई समूह के प्रतिनिधित्व के रूप में महसूस किया जा सकता है#स्पेशल_यूनिटरी_ग्रुप#द_ग्रुप_एसयू(3)|एसयू(3) नामक विशेष एकात्मक समूह के लाई समूहों से जुड़े लाई बीजगणित। इस समूह के लाई बीजगणित (वास्तव में एक वास्तविक लाई बीजगणित) का आयाम आठ है और इसलिए इसमें आठ रेखीयस्वतंत्र जनरेटर के साथ कुछ सेट हैं, जिन्हें इस प्रकार लिखा जा सकता है , मैं 1 से 8 तक मान ले रहा हूँ।[1]


कैसिमिर ऑपरेटर्स और इनवेरिएंट

गेल-मैन मैट्रिक्स का वर्ग योग द्विघात कासिमिर ऑपरेटर, एक समूह अपरिवर्तनीय देता है,

जहाँ 3×3 तत्समक आव्यूह है। SU(3)#Casimir ऑपरेटरों के लिए एक और, स्वतंत्र, क्लेबश-गॉर्डन गुणांक भी है।

क्वांटम क्रोमोडायनामिक्स पर अनुप्रयोग

ये मैट्रिक्स क्वांटम क्रोमोडायनामिक्स (cf. ग्लूऑन#आठ ग्लूऑन रंग) के रंगीन क्वार्क से जुड़े ग्लूऑन क्षेत्रों के आंतरिक (रंग) घुमावों का अध्ययन करने के लिए काम करते हैं। गेज रंग रोटेशन एक स्पेसटाइम-निर्भर एसयू (3) समूह तत्व है

 जहां आठ सूचकांकों का योग है k निहित है. 

यह भी देखें

संदर्भ

  1. 1.0 1.1 Stefan Scherer; Matthias R. Schindler (31 May 2005). "एक चिरल गड़बड़ी सिद्धांत प्राइमर". p. 1–2. arXiv:hep-ph/0505265.
  2. David Griffiths (2008). Introduction to Elementary Particles (2nd ed.). John Wiley & Sons. pp. 283–288, 366–369. ISBN 978-3-527-40601-2.
  3. Haber, Howard. "गेल-मैन मैट्रिसेस के गुण" (PDF). Physics 251 Group Theory and Modern Physics. U.C. Santa Cruz. Retrieved 1 April 2019.