डार्विन-फाउलर विधि

From Vigyanwiki

सांख्यिकीय यांत्रिकी में, माध्य संभाव्यता के साथ वितरण फ़ंक्शन (भौतिकी) प्राप्त करने के लिए डार्विन-फाउलर विधि का उपयोग किया जाता है। इसे 1922-1923 में चार्ल्स गैल्टन डार्विन और राल्फ एच. फाउलर द्वारा विकसित किया गया था।[1][2]

वितरण कार्यों का उपयोग सांख्यिकीय भौतिकी में ऊर्जा स्तर पर रहने वाले कणों की औसत संख्या का अनुमान लगाने के लिए किया जाता है (इसलिए इसे व्यवसाय संख्या भी कहा जाता है)। ये वितरण अधिकतर उन संख्याओं के रूप में प्राप्त होते हैं जिनके लिए विचाराधीन प्रणाली अधिकतम संभावना की स्थिति में होती है। किंतु वास्तव में किसी को औसत संख्या की आवश्यकता होती है। ये औसत संख्याएं डार्विन-फाउलर विधि द्वारा प्राप्त की जा सकती हैं। अवश्य ही, सांख्यिकीय यांत्रिकी की तरह, थर्मोडायनामिक सीमा (कणों की बड़ी संख्या) में प्रणाली के लिए, परिणाम अधिकतमकरण के समान ही होते हैं।

डार्विन-फाउलर विधि

सांख्यिकीय यांत्रिकी पर अधिकांश ग्रंथों में सांख्यिकीय वितरण कार्य करता है मैक्सवेल-बोल्ट्ज़मैन आँकड़े, बोस-आइंस्टीन आँकड़े, फ़र्मी-डिराक आँकड़े) उन लोगों को निर्धारित करके प्राप्त किए जाते हैं जिनके लिए प्रणाली अधिकतम संभावना की स्थिति में है। किंतु किसी को वास्तव में औसत या औसत संभावना वाले लोगों की आवश्यकता होती है, चूँकि - निश्चित रूप से - परिणाम सामान्यतः बड़ी संख्या में अवयव वाली प्रणाली के लिए समान होते हैं, जैसा कि सांख्यिकीय यांत्रिकी में होता है। माध्य संभाव्यता के साथ वितरण फलन प्राप्त करने की विधि सी.जी. डार्विन और आर.एच. फाउलर द्वारा विकसित की गई है[2] और इसलिए इसे डार्विन-फाउलर विधि के रूप में जाना जाता है। यह विधि सांख्यिकीय वितरण फलन प्राप्त करने के लिए सबसे विश्वसनीय सामान्य प्रक्रिया है। चूंकि विधि चयनकर्ता चर (गिनती प्रक्रिया की अनुमति देने के लिए प्रत्येक अवयव के लिए प्रस्तुत किया गया कारक) को नियोजित करती है, इसलिए विधि को चयनकर्ता चर की डार्विन-फाउलर विधि के रूप में भी जाना जाता है। ध्यान दें कि वितरण फ़ंक्शन प्रायिकता के समान नहीं है - सीएफ। मैक्सवेल-बोल्ट्ज़मैन वितरण, बोस-आइंस्टीन वितरण, फर्मी-डिराक वितरण। यह भी ध्यान दें कि वितरण फ़ंक्शन जो उन अवस्थाओं के अंश का माप है जो वास्तव में अवयव द्वारा व्याप्त हैं, या द्वारा दिया गया है, जहाँ ऊर्जा स्तर की गिरावट है उर्जा से और इस स्तर पर उपस्थित अवयव की संख्या है (उदाहरण के लिए फर्मी-डिराक आंकड़ों में 0 या 1)। कुल ऊर्जा और अवयव की कुल संख्या को फिर और द्वारा दिए जाते हैं।

डार्विन-फाउलर पद्धति का उपचार ई. श्रोडिंगर,[3] फाउलर[4] और फाउलर और ई. ए गुगेनहेम,[5] के. हुआंग,[6] और एच. जे. डब्ल्यू. मुलर-कर्स्टनके ग्रंथों में किया गया है।[7] आर.बी. डिंगल की पुस्तक में बोस-आइंस्टीन संघनन की व्युत्पत्ति के लिए इस विधि पर भी चर्चा की गई है और इसका उपयोग किया गया है।[8]

मौलिक आँकड़े

स्वतंत्र अवयव के लिए ऊर्जा के स्तर पर और विहित प्रणाली के लिए तापमान के साथ ताप स्नान हम निर्धारित करते हैं

सभी व्यवस्थाओं का औसत, माध्य व्यवसाय संख्या है

एक चयनकर्ता चर व्यवस्थित करके सम्मिलित करें

मौलिक सांख्यिकी में अवयव (a) अलग-अलग हैं और इन्हें पैकेट के साथ व्यवस्थित किया जा सकता है स्तर पर अवयव जिनकी संख्या है

जिससे इस स्थिति में

(बी) स्तर की अधोगति के लिए अनुमति देते हुए यह अभिव्यक्ति बन जाती है

चयनकर्ता चर किसी को गुणांक निकालने की अनुमति देता है जो की है। इस प्रकार

और इसलिए

यह परिणाम जो अधिकतमीकरण द्वारा प्राप्त सबसे संभावित मूल्य से सहमत है, इसमें एक भी सन्निकटन सम्मिलित नहीं है और इसलिए यह स्पष्ट है, और इस प्रकार इस डार्विन-फाउलर विधि की शक्ति को प्रदर्शित करता है।

क्वांटम आँकड़े

हमारे पास उपरोक्तानुसार है

जहाँ ऊर्जा स्तर में अवयव की संख्या है। चूंकि क्वांटम सांख्यिकी में अवयव अप्रभेद्य हैं, इसलिए अवयव को पैकेटों में विभाजित करने की विधियों की संख्या की कोई प्रारंभिक गणना नहीं की गई है आवश्यक है। इसलिए योग केवल संभावित मानों के योग को संदर्भित करता है।

फर्मी-डिराक आँकड़ों की स्थिति में हमारे पास है

या

प्रति अवस्था. ऊर्जा स्तर ऊर्जा स्तर के लिए स्थितियाँ हैं। इसलिए हमारे पास है

बोस-आइंस्टीन सांख्यिकी की स्थिति में हमारे पास है

पहले जैसी ही प्रक्रिया से हम वर्तमान स्थिति में प्राप्त करते हैं

किंतु

इसलिए

दोनों स्थितियों को सारांशित करना और की परिभाषा को याद करते हुए, हम पाते हैं कि में का गुणांक है

जहां ऊपरी संकेत फर्मी-डिराक सांख्यिकी पर प्रयुक्त होते हैं, और निचले संकेत बोस-आइंस्टीन सांख्यिकी पर प्रयुक्त होते हैं।

आगे हमें फ़ंक्शन के स्थिति में में के गुणांक का मूल्यांकन करना होगा जिसे इस प्रकार विस्तारित किया जा सकता है

का गुणांक कॉची के अवशेष प्रमेय की सहायता से है,

हम ध्यान दें कि इसी प्रकार गुणांक उपरोक्त के रूप में प्राप्त किया जा सकता है

जहाँ

अंतर करने से एक प्राप्त होता है

और

अब कोई स्थिर बिंदु पर के पहले और दूसरे डेरिवेटिव का मूल्यांकन करता है जिस पर सैडल बिंदु के आसपास के मूल्यांकन की इस पद्धति को तीव्रतम अवतरण की विधि के रूप में जाना जाता है। तब कोई एक प्राप्त करता है

हमारे पास है और इसलिए

(तब से +1 नगण्य है बड़ी है)। हम क्षण में देखेंगे कि यह अंतिम संबंध केवल सूत्र है

हमें मूल्यांकन करके माध्य व्यवसाय संख्या प्राप्त होती है

यह अभिव्यक्ति आयतन में कुल के अवयव की औसत संख्या देती है जो तापमान पर 1-कण स्तर पर अवनति के साथ व्याप्त है (उदाहरण के लिए एक प्राथमिक संभावना देखें)। संबंध के विश्वसनीय होने के लिए यह जांचना चाहिए कि उच्च क्रम के योगदान प्रारंभ में परिमाण में कम हो रहे हैं जिससे सैडल बिंदु के आसपास का विस्तार वास्तव में एक स्पर्शोन्मुख विस्तार उत्पन्न कर सके।

संदर्भ

  1. "Darwin–Fowler method". Encyclopedia of Mathematics (in English). Retrieved 2018-09-27.
  2. 2.0 2.1 Darwin, C. G.; Fowler, R. H. (1922). "ऊर्जा के विभाजन पर". Phil. Mag. 44: 450–479, 823–842. doi:10.1080/14786440908565189.
  3. Schrödinger, E. (1952). सांख्यिकीय ऊष्मप्रवैगिकी. Cambridge University Press.
  4. Fowler, R. H. (1952). सांख्यिकीय यांत्रिकी. Cambridge University Press.
  5. Fowler, R. H.; Guggenheim, E. (1960). सांख्यिकीय ऊष्मप्रवैगिकी. Cambridge University Press.
  6. Huang, K. (1963). सांख्यिकीय यांत्रिकी. Wiley.
  7. Müller–Kirsten, H. J. W. (2013). सांख्यिकीय भौतिकी की मूल बातें (2nd ed.). World Scientific. ISBN 978-981-4449-53-3.
  8. Dingle, R. B. (1973). Asymptotic Expansions: Their Derivation and Interpretation. Academic Press. pp. 267–271. ISBN 0-12-216550-0.

अग्रिम पठन