एफकेजी असमानता
गणित में, फोर्टुइन-कास्टेलिन-गिनिब्रे (एफकेजी) असमानता सहसंबंध असमानता है, जो सांख्यिकीय यांत्रिकी और कॉम्बिनेटरिक्स #संभाव्य कॉम्बिनेटरिक्स (विशेष रूप से यादृच्छिक ग्राफ और संभाव्य विधि) में मौलिक उपकरण है। Cees M. Fortuin, Pieter W. Kasteleyn, and Jean Ginibre (1971). अनौपचारिक रूप से, यह कहता है कि कई यादृच्छिक प्रणालियों में, बढ़ती घटनाएँ सकारात्मक रूप से सहसंबद्ध होती हैं, जबकि बढ़ती और घटती घटनाएँ नकारात्मक रूप से सहसंबद्ध होती हैं। इसे यादृच्छिक क्लस्टर मॉडल का अध्ययन करके प्राप्त किया गया था।
आई.आई.डी. के विशेष मामले के लिए पुराना संस्करण। चर, जिसे हैरिस असमानता कहा जाता है, के कारण है Theodore Edward Harris (1960), # विशेष मामला देखें: हैरिस असमानता। एफकेजी असमानता का सामान्यीकरण #ए सामान्यीकरण है: होली असमानता|होली असमानता (1974) नीचे, और इससे भी आगे का सामान्यीकरण अहल्सवेडे-डेकिन असमानता|अहल्सवेडे-डेकिन चार फ़ंक्शन प्रमेय (1978) है। इसके अलावा, इसका निष्कर्ष ग्रिफ़िथ असमानताओं के समान ही है, लेकिन परिकल्पनाएँ भिन्न हैं।
असमानता
होने देना परिमित वितरणात्मक जाली हो, और μ उस पर गैर-नकारात्मक फ़ंक्शन हो, जिसे ('एफकेजी') 'जाली स्थिति' को संतुष्ट करने के लिए माना जाता है (कभी-कभी इस स्थिति को संतुष्ट करने वाले फ़ंक्शन को 'लॉग सुपरमॉड्यूलर' कहा जाता है) यानी,
जाली में सभी x, y के लिए .
FKG असमानता तब कहती है कि किन्हीं दो नीरस रूप से बढ़ते कार्यों के लिए ƒ और g चालू हैं , निम्नलिखित सकारात्मक सहसंबंध असमानता रखती है:
वही असमानता (सकारात्मक सहसंबंध) तब सत्य होती है जब ƒ और g दोनों घट रहे हों। यदि बढ़ रहा है और दूसरा घट रहा है, तो वे नकारात्मक रूप से सहसंबद्ध होते हैं और उपरोक्त असमानता उलट जाती है।
इसी तरह के बयान अधिक आम तौर पर लागू होते हैं, जब आवश्यक रूप से परिमित नहीं है, यहाँ तक कि गणनीय भी नहीं है। उस स्थिति में, μ को सीमित माप होना चाहिए, और जाली की स्थिति को सिलेंडर (बीजगणित) घटनाओं का उपयोग करके परिभाषित किया जाना चाहिए; उदाहरण के लिए, धारा 2.2 देखें Grimmett (1999).
प्रमाण के लिए देखें Fortuin, Kasteleyn & Ginibre (1971) या अहलस्वेड-डेकिन असमानता|अहलस्वेड-डेकिन असमानता (1978)। साथ ही, नीचे रफ स्केच भी दिया गया है Holley (1974), मार्कोव श्रृंखला युग्मन (संभावना) तर्क का उपयोग करते हुए।
शब्दावली में भिन्नता
μ के लिए जाली स्थिति को 'बहुभिन्नरूपी कुल सकारात्मकता' और कभी-कभी 'मजबूत एफकेजी स्थिति' भी कहा जाता है; शब्द ('गुणक') 'एफकेजी स्थिति' का प्रयोग पुराने साहित्य में भी किया जाता है।
μ का वह गुण जिसके कारण बढ़ते कार्य सकारात्मक रूप से सहसंबद्ध होते हैं, को 'सकारात्मक जुड़ाव' या 'कमजोर एफकेजी स्थिति' भी कहा जाता है।
इस प्रकार, एफकेजी प्रमेय को दोबारा दोहराया जा सकता है क्योंकि मजबूत एफकेजी स्थिति का तात्पर्य कमजोर एफकेजी स्थिति से है।
विशेष मामला: हैरिस असमानता
यदि जाली पूरी तरह से व्यवस्थित है, तो किसी भी माप μ के लिए जाली की स्थिति तुच्छ रूप से संतुष्ट होती है। यदि माप μ एकसमान है, तो FKG असमानता चेबीशेव की योग असमानता है: यदि दो बढ़ते कार्य मान लेते हैं और , तब
अधिक सामान्यतः, किसी भी संभाव्यता के लिए μ को मापें और कार्यों में वृद्धि और जी,
जो तुरंत अनुसरण करता है
जाली की स्थिति तब भी तुच्छ रूप से संतुष्ट होती है जब जाली पूरी तरह से ऑर्डर की गई जाली का उत्पाद होती है, , और उत्पाद माप है. अक्सर सभी कारक (जालक और माप दोनों) समान होते हैं, यानी, μ i.i.d. की संभाव्यता वितरण है। यादृच्छिक चर।
उत्पाद माप के मामले में एफकेजी असमानता को टेड हैरिस (गणितज्ञ) के बाद 'हैरिस असमानता' के रूप में भी जाना जाता है। (Harris 1960), जिन्होंने विमान में अंतःस्त्राव सिद्धांत के अपने अध्ययन में इसे पाया और इसका उपयोग किया। हैरिस असमानता का प्रमाण जो उपरोक्त डबल इंटीग्रल ट्रिक का उपयोग करता है पाया जा सकता है, उदाहरण के लिए, धारा 2.2 में Grimmett (1999).
सरल उदाहरण
विशिष्ट उदाहरण निम्नलिखित है. अनंत मधुकोश जाली के प्रत्येक षट्भुज को प्रायिकता के साथ काला रंग दें और संभावना के साथ सफेद , दूसरे से स्वतंत्र। मान लीजिए कि a, b, c, d चार षट्भुज हैं, जरूरी नहीं कि अलग-अलग हों। होने देना और ऐसी घटनाएँ बनें कि क्रमशः a से b तक काला पथ है, और c से d तक काला पथ है। फिर हैरिस असमानता कहती है कि ये घटनाएँ सकारात्मक रूप से सहसंबद्ध हैं: . दूसरे शब्दों में, पथ की उपस्थिति मानने से दूसरे की संभावना ही बढ़ सकती है।
इसी तरह, यदि हम के अंदर षट्भुजों को बेतरतीब ढंग से रंगते हैं रोम्बस के आकार का हेक्स (बोर्ड गेम), तो बोर्ड के बाईं ओर से दाईं ओर ब्लैक क्रॉसिंग होने की घटना ऊपर की ओर से नीचे तक ब्लैक क्रॉसिंग होने के साथ सकारात्मक रूप से सहसंबद्ध है। दूसरी ओर, बाएं से दाएं ब्लैक क्रॉसिंग होने का ऊपर से नीचे सफेद क्रॉसिंग होने के साथ नकारात्मक संबंध है, क्योंकि पहला बढ़ती हुई घटना है (कालेपन की मात्रा में), जबकि दूसरा घट रहा है। वास्तव में, हेक्स बोर्ड के किसी भी रंग में इन दो घटनाओं में से बिल्कुल घटित होती है - यही कारण है कि हेक्स अच्छी तरह से परिभाषित खेल है।
एर्डोस-रेनी मॉडल|एर्डोस-रेनी यादृच्छिक ग्राफ में, हैमिल्टनियन चक्र का अस्तित्व ग्राफ के रंग|3-रंग योग्यता के साथ नकारात्मक रूप से सहसंबद्ध है, क्योंकि पहली बढ़ती हुई घटना है, जबकि बाद वाली घट रही है।
सांख्यिकीय यांत्रिकी से उदाहरण
सांख्यिकीय यांत्रिकी में, जाली की स्थिति (और इसलिए एफकेजी असमानता) को संतुष्ट करने वाले उपायों का सामान्य स्रोत निम्नलिखित है:
अगर ऑर्डर किया गया सेट है (जैसे ), और परिमित या अनंत ग्राफ़ (अलग गणित) है, तो सेट का -वैल्यूड कॉन्फ़िगरेशन पोसेट है जो वितरणात्मक जाली है।
अब अगर सबमॉड्यूलर गिब्स माप है (यानी, कार्यों का परिवार)।
प्रत्येक परिमित के लिए , ऐसा कि प्रत्येक सबमॉड्यूलर है), तो कोई संबंधित गिब्स माप को इस प्रकार परिभाषित करता है
यदि μ कॉन्फ़िगरेशन के सेट पर इस हैमिल्टनियन के लिए गिब्स माप है , तो यह दिखाना आसान है कि μ जाली की स्थिति को संतुष्ट करता है, देखें Sheffield (2005).
ग्राफ़ पर आइसिंग मॉडल प्रमुख उदाहरण है . होने देना , जिसे स्पिन कहा जाता है, और . निम्नलिखित क्षमता लें:
सबमॉड्यूलैरिटी की जांच करना आसान है; सहज रूप से, न्यूनतम या अधिकतम दो कॉन्फ़िगरेशन लेने से असहमत स्पिनों की संख्या कम हो जाती है। फिर, ग्राफ़ पर निर्भर करता है और का मूल्य , या अधिक चरम गिब्स उपाय हो सकते हैं, देखें, उदाहरणार्थ, Georgii, Häggström & Maes (2001) और Lyons (2000).
सामान्यीकरण: होली असमानता
होली असमानता, के कारण Richard Holley (1974), बताता है कि अपेक्षित मूल्य
परिमित वितरण जालक पर नीरस रूप से बढ़ते फलन का दो सकारात्मक कार्यों के संबंध में μ1, एम2 जाली पर शर्त को पूरा करें
बशर्ते कार्य हॉली शर्त (मानदंड) को पूरा करते हों
जाली में सभी x, y के लिए।
- असमानता को पुनर्प्राप्त करने के लिए: यदि μ जाली की स्थिति को संतुष्ट करता है और ƒ और g पर कार्य बढ़ रहे हैं , फिर μ1(x)=g(x)μ(x) और μ2(x)= μ(x) होली असमानता की जाली-प्रकार की स्थिति को संतुष्ट करेगा। फिर होली असमानता यह बताती है
जो कि सिर्फ एफकेजी असमानता है।
जहां तक एफकेजी का सवाल है, होली असमानता अहल्सवेड-डेकिन असमानता से आती है।
जाली की स्थिति को कमजोर करना: एकरसता
के सामान्य मामले पर विचार करें उत्पाद होना कुछ सीमित सेट के लिए . μ पर जाली की स्थिति को आसानी से निम्नलिखित 'एकरसता' के रूप में देखा जा सकता है, जिसका गुण यह है कि इसे जाली की स्थिति की तुलना में जांचना अक्सर आसान होता है:
जब भी कोई शीर्ष तय करता है और दो विन्यास φ और ψ बाहर v ऐसे कि सभी के लिए , φ(v) का μ-सशर्त वितरण दिया गया है दिए गए ψ(v) के μ-सशर्त वितरण को स्टोकेस्टिक क्रम में रखते हुए .
अब, यदि μ इस एकरसता गुण को संतुष्ट करता है, तो यह FKG असमानता (सकारात्मक संघ) को बनाए रखने के लिए पहले से ही पर्याप्त है।
यहाँ प्रमाण का मोटा खाका दिया गया है Holley (1974): किसी भी प्रारंभिक कॉन्फ़िगरेशन से शुरू करना पर , कोई साधारण मार्कोव श्रृंखला (महानगर एल्गोरिथ्म) चला सकता है जो प्रत्येक चरण में कॉन्फ़िगरेशन को अद्यतन करने के लिए स्वतंत्र यूनिफ़ॉर्म [0,1] यादृच्छिक चर का उपयोग करता है, जैसे कि श्रृंखला में अद्वितीय स्थिर माप होता है, दिया गया μ। μ की एकरसता का तात्पर्य है कि प्रत्येक चरण पर कॉन्फ़िगरेशन स्वतंत्र चर का मोनोटोन फ़ंक्शन है, इसलिए # विशेष मामला: हैरिस असमानता का तात्पर्य है कि इसमें सकारात्मक जुड़ाव है। इसलिए, सीमित स्थिर माप μ में भी यह गुण है।
एकरसता गुण का दो मापों के लिए प्राकृतिक संस्करण है, जो कहता है कि μ1 सशर्त रूप से बिंदुवार μ पर हावी है2. यह देखना फिर आसान है कि यदि μ1 और μ2 #A सामान्यीकरण की जाली-प्रकार की स्थिति को संतुष्ट करें: होली असमानता, फिर μ1 सशर्त रूप से बिंदुवार μ पर हावी है2. दूसरी ओर, मार्कोव श्रृंखला युग्मन (संभावना) तर्क उपरोक्त के समान है, लेकिन अब हैरिस असमानता का आह्वान किए बिना, यह दर्शाता है कि सशर्त बिंदुवार वर्चस्व, वास्तव में, स्टोकेस्टिक ऑर्डरिंग का तात्पर्य है। स्टोकेस्टिक वर्चस्व ऐसा कहने के बराबर है सभी के लिए बढ़ते हुए, इस प्रकार हमें होली असमानता का प्रमाण मिलता है। (और इस प्रकार हैरिस असमानता का उपयोग किए बिना, एफकेजी असमानता का प्रमाण भी है।)
देखना Holley (1974) और Georgii, Häggström & Maes (2001) जानकारी के लिए।
यह भी देखें
- अहलस्वेड-डेकिन असमानता
- XYZ असमानता
- बीके असमानता
संदर्भ
- Eaton, Morris L. (1987), "The FKG inequality and association", Lectures on Topics in Probability Inequalities, Amsterdam, pp. 111–151, ISBN 90-6196-316-8
{{citation}}
: CS1 maint: location missing publisher (link) - Fishburn, P.C. (2001) [1994], "FKG inequality", Encyclopedia of Mathematics, EMS Press
- Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. (1971), "Correlation inequalities on some partially ordered sets", Communications in Mathematical Physics, 22 (2): 89–103, Bibcode:1971CMaPh..22...89F, doi:10.1007/BF01651330, MR 0309498, S2CID 1011815
- Friedli, S.; Velenik, Y. (2017). Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction. Cambridge: Cambridge University Press. ISBN 9781107184824.
- Georgii, H-O.; Häggström, O.; Maes, C. (2001), "The random geometry of equilibrium phases", Phase Transitions and Critical Phenomena, vol. 18, Academic Press, San Diego, CA, pp. 1–142, arXiv:math/9905031, doi:10.1016/S1062-7901(01)80008-2, ISBN 9780122203183, MR 2014387, S2CID 119137791
- Grimmett, G. R. (1999), Percolation. Second edition, Grundlehren der mathematischen Wissenschaften, vol. 321, Springer-Verlag, doi:10.1007/978-3-662-03981-6, ISBN 3-540-64902-6, MR 1707339
- Harris, T. E. (1960), "A lower bound for the critical probability in a certain percolation process", Mathematical Proceedings of the Cambridge Philosophical Society, 56 (1): 13–20, Bibcode:1960PCPS...56...13H, doi:10.1017/S0305004100034241, MR 0115221, S2CID 122724783
- Holley, R. (1974), "Remarks on the FKG inequalities", Communications in Mathematical Physics, 36 (3): 227–231, Bibcode:1974CMaPh..36..227H, doi:10.1007/BF01645980, MR 0341552, S2CID 73649690
- Lyons, R. (2000), "Phase transitions on nonamenable graphs", J. Math. Phys., 41 (3): 1099–1126, arXiv:math/9908177, Bibcode:2000JMP....41.1099L, doi:10.1063/1.533179, MR 1757952, S2CID 10350129
- Sheffield, S. (2005), "Random surfaces", Astérisque, 304, arXiv:math/0304049, Bibcode:2003math......4049S, MR 2251117