गणित में, विभिन्न समाकलन हैं जिन्हें जर्मन गणितज्ञ पीटर गुस्ताव लेज्यून डिरिचलेट के पश्चात् डिरिचलेट समाकलन के नाम से जाना जाता है, जिनमें से धनात्मक वास्तविक रेखा पर सिंक फलन का अनुचित समाकलन है:

यह समाकलन पूर्णतया अभिसारी नहीं है, अर्थात्

धनात्मक वास्तविक रेखा पर अनंत लेब्सग्यू या रीमैन अनुचित समाकलन है, इसलिए साइन फलन धनात्मक वास्तविक रेखा पर लेब्सग्यू पूर्णांक नहीं है। चूंकि, सिन फलन अनुचित
रीमैन समाकलन या सामान्यीकृत रीमैन या हेनस्टॉक-कुर्जवील समाकलन के अर्थ में एकीकृत है।
[1][2] इसे डिरिचलेट के अनुचित समाकलन के परीक्षण का उपयोग करके देखा जा सकता है।
यह निश्चित समाकलन के मूल्यांकन के लिए विशेष तकनीकों का अच्छा उदाहरण है, अधिकांशतः जब एकीकृत के लिए प्राथमिक प्रतिअवकलन की कमी के कारण गणना के मौलिक प्रमेय को प्रत्यक्ष प्रयुक्त करना उपयोगी नहीं होता है, साइन समाकलन के रूप में, साइन फलन का प्रतिअवकलन, कोई प्राथमिक कार्य नहीं है इस स्थिति में, अनुचित निश्चित समाकलन को विभिन्न विधियों से निर्धारित किया जा सकता है: इस प्रकार लाप्लास समाकलित साइन कंटूर समाकलन और डिरिचलेट कर्नेल के अनुसार अंतर करते हुए दोहरा समाकलन को परिवर्तित कर देता है।
मूल्यांकन
लाप्लास परिवर्तन
मान लीजिए कि
एक फलन है जिसे
द्वारा परिभाषित किया गया है तब इसका लाप्लास रूपांतरण द्वारा दिया जाता है

इस प्रकार यदि समाकलन उपस्थित है.
[3] लाप्लास रूपांतरण का गुण या अनुचित समाकलन का मूल्यांकन करना है
![{\displaystyle {\mathcal {L}}\left[{\frac {f(t)}{t}}\right]=\int _{s}^{\infty }F(u)\,du,}](/index.php?title=Special:MathShowImage&hash=bc5228d60b746ce93ef2f522c7241de8&mode=mathml)
किन्तु

उपस्थित हो
निम्नलिखित में, किसी को परिणाम
की आवश्यकता होती है जो फलन
का लाप्लास रूपांतरण है (व्युत्पत्ति के लिए 'समाकलन साइन के अंतर्गत विभेदीकरण' अनुभाग देखें) साथ ही एबेल के प्रमेय का संस्करण (अंतिम मान प्रमेय का परिणाम या अनुचित रूप से पूर्णांकित कार्यों के लिए अंतिम मान प्रमेय (समाकलन के लिए एबेल का प्रमेय))।
इसलिए,
![{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\sin t}{t}}\,dt&=\lim _{s\to 0}\int _{0}^{\infty }e^{-st}{\frac {\sin t}{t}}\,dt=\lim _{s\to 0}{\mathcal {L}}\left[{\frac {\sin t}{t}}\right]\\[6pt]&=\lim _{s\to 0}\int _{s}^{\infty }{\frac {du}{u^{2}+1}}=\lim _{s\to 0}\arctan u{\Biggr |}_{s}^{\infty }\\[6pt]&=\lim _{s\to 0}\left[{\frac {\pi }{2}}-\arctan(s)\right]={\frac {\pi }{2}}.\end{aligned}}}](/index.php?title=Special:MathShowImage&hash=d1b0167ac8c3d997d1a29a4ff7873fd2&mode=mathml)
दोहरा समाकलन
इस प्रकार लाप्लास रूपांतरण का उपयोग करके डिरिचलेट समाकलन का मूल्यांकन करना समाकलन के क्रम (गणना) को परिवर्तित करके उसी दोहरे निश्चित समाकलन की गणना करने के समान है, अर्थात्,


आदेश में परिवर्तन इस तथ्य से स्पष्ट है कि सभी के लिए

, समाकलन पूर्णतः अभिसरण है।
समाकलन साइन के अंतर्गत विभेदन (फेनमैन की विधि)
पहले समाकलन को अतिरिक्त वेरिएबल
के एक फलन के रूप में पुनः लिखें, अर्थात्
का लाप्लास रूपांतरण

इस प्रकार डिरिचलेट समाकलन का मूल्यांकन करने के लिए, हमें

निर्धारित करने की आवश्यकता है। भागों द्वारा समाकलन के पश्चात् प्रभुत्व अभिसरण प्रमेय को प्रयुक्त करके

की सततता को सही किया जा सकता है। इस प्रकार

के संबंध में अंतर करें और प्राप्त करने के लिए समाकलन साइन के अनुसार अंतर करने के लिए
लीबनिज समाकलन नियम प्रयुक्त करें
![{\displaystyle {\begin{aligned}{\frac {df}{ds}}&={\frac {d}{ds}}\int _{0}^{\infty }e^{-st}{\frac {\sin t}{t}}\,dt=\int _{0}^{\infty }{\frac {\partial }{\partial s}}e^{-st}{\frac {\sin t}{t}}\,dt\\[6pt]&=-\int _{0}^{\infty }e^{-st}\sin t\,dt.\end{aligned}}}](/index.php?title=Special:MathShowImage&hash=f38a34bb95043df9ee67ec4f03444637&mode=mathml)
अब यूलर के सूत्र

का उपयोग करके कोई साइन फलन को सम्मिश्र घातांक के संदर्भ में व्यक्त कर सकता है:

इसलिए,
![{\displaystyle {\begin{aligned}{\frac {df}{ds}}&=-\int _{0}^{\infty }e^{-st}\sin t\,dt=-\int _{0}^{\infty }e^{-st}{\frac {e^{it}-e^{-it}}{2i}}dt\\[6pt]&=-{\frac {1}{2i}}\int _{0}^{\infty }\left[e^{-t(s-i)}-e^{-t(s+i)}\right]dt\\[6pt]&=-{\frac {1}{2i}}\left[{\frac {-1}{s-i}}e^{-t(s-i)}-{\frac {-1}{s+i}}e^{-t(s+i)}\right]_{0}^{\infty }\\[6pt]&=-{\frac {1}{2i}}\left[0-\left({\frac {-1}{s-i}}+{\frac {1}{s+i}}\right)\right]=-{\frac {1}{2i}}\left({\frac {1}{s-i}}-{\frac {1}{s+i}}\right)\\[6pt]&=-{\frac {1}{2i}}\left({\frac {s+i-(s-i)}{s^{2}+1}}\right)=-{\frac {1}{s^{2}+1}}.\end{aligned}}}](/index.php?title=Special:MathShowImage&hash=09281727c66679d2b1347fa2e197d27a&mode=mathml)
इस प्रकार

के संबंध में समाकलन देता है

जहां

समाकलन का एक स्थिरांक है जिसे निर्धारित किया जाना है। चूँकि

मूल मान का उपयोग कर रहा है। इसका कारण यह है कि

के लिए

अंत में

पर सततता से हमारे निकट पहले की तरह

है।
सम्मिश्र कंटूर समाकलन
विचार कीजिये

इस प्रकार सम्मिश्र वैरिएबल

के एक फलन के रूप में इसके मूल में एक सरल पोल है, जो जॉर्डन के लेम्मा के अनुप्रयोग को रोकता है, जिसकी अन्य परिकल्पनाएँ संतुष्ट हैं।
पुनः नया फलन परिभाषित करें [4]

इस प्रकार पोल को ऋणात्मक काल्पनिक अक्ष पर ले जाया गया है जिससे

को

पर केन्द्रित त्रिज्या

के अर्धवृत्त

के साथ धनात्मक काल्पनिक दिशा में विस्तार करते हुए एकीकृत किया जा सके और वास्तविक अक्ष के साथ संवृत किया जा सके। अवशेष प्रमेय

द्वारा सम्मिश्र समाकलन शून्य है, पुनः एक सीमा

लेता है

जैसे ही

अनंत तक जाता है, दूसरा पद लुप्त हो जाता है। जहां तक पहले समाकलन का है, कोई सम्मिश्र-मान फलन
f के लिए वास्तविक रेखा पर समाकलन के लिए सोखोटस्की-प्लेमेलज प्रमेय के एक संस्करण का उपयोग कर सकता है और वास्तविक रेखा और वास्तविक स्थिरांक

और

पर

एक खोज के साथ सतत भिन्न हो सकता है।

जहाँ
कॉची प्रमुख मान को दर्शाता है। उपरोक्त मूल गणना पर पुनः कोई भी लिख सकता है

दोनों पक्ष के काल्पनिक भाग को लेने और ध्यान देने पर कि फलन

सम है, हमें प्राप्त होता है

अंत में,

वैकल्पिक रूप से,

के लिए समाकलन कंटूर के रूप में त्रिज्या

और

के ऊपरी अर्ध-समतल अर्धवृत्तों के मिलन को वास्तविक रेखा के दो खंडों के साथ चुनें जो उन्हें जोड़ते हैं। एक ओर कंटूर समाकलन

और

से स्वतंत्र रूप से शून्य है, दूसरी ओर

और

समाकलित का काल्पनिक भाग

में परिवर्तित होता है (यहां

ऊपरी अर्ध तल पर लघुगणक की कोई शाखा है) जो

की ओर ले जाता है
डिरिचलेट कर्नेल के प्रसिद्ध सूत्र पर विचार करें:[5]
![{\displaystyle D_{n}(x)=1+2\sum _{k=1}^{n}\cos(2kx)={\frac {\sin[(2n+1)x]}{\sin(x)}}.}](/index.php?title=Special:MathShowImage&hash=ab27c131140903e3c73c284ab4b84004&mode=mathml)
यह तुरंत इस प्रकार है:

परिभाषित करना
![{\displaystyle f(x)={\begin{cases}{\frac {1}{x}}-{\frac {1}{\sin(x)}}&x\neq 0\\[6pt]0&x=0\end{cases}}}](/index.php?title=Special:MathShowImage&hash=037090e5afc07740692f7ac6d2da8778&mode=mathml)
स्पष्ट रूप से
सतत है जब
0 पर इसकी सततता देखने के लिए एल'होपिटल का नियम प्रयुक्त करें:

इस तरह,
रीमैन-लेबेस्गु लेम्मा की आवश्यकताओं को पूर्ण करता है। इसका कारण यह है:

(यहां प्रयुक्त रीमैन-लेब्सग लेम्मा का रूप उद्धृत लेख में सिद्ध है।)
हम गणना करना चाहेंगे:
![{\displaystyle {\begin{aligned}\int _{0}^{\infty }{\frac {\sin(t)}{t}}dt=&\lim _{\lambda \to \infty }\int _{0}^{\lambda {\frac {\pi }{2}}}{\frac {\sin(t)}{t}}dt\\[6pt]=&\lim _{\lambda \to \infty }\int _{0}^{\frac {\pi }{2}}{\frac {\sin(\lambda x)}{x}}dx\\[6pt]=&\lim _{\lambda \to \infty }\int _{0}^{\frac {\pi }{2}}{\frac {\sin(\lambda x)}{\sin(x)}}dx\\[6pt]=&\lim _{n\to \infty }\int _{0}^{\frac {\pi }{2}}{\frac {\sin((2n+1)x)}{\sin(x)}}dx\\[6pt]=&\lim _{n\to \infty }\int _{0}^{\frac {\pi }{2}}D_{n}(x)dx={\frac {\pi }{2}}\end{aligned}}}](/index.php?title=Special:MathShowImage&hash=ef60ea03389f00d3140202f0627f43ec&mode=mathml)
चूंकि हमें

में वास्तविक सीमा को

में समाकलित सीमा में परिवर्तित किया जाना चाहिए, जो यह दिखाने से पता चलेगा कि सीमा उपस्थित है।
हमारे निकट उपस्थित भागों द्वारा समाकलन का उपयोग किया जाता है

अब चूँकि

और

बाईं ओर का शब्द बिना किसी समस्या के अभिसरण करता है। पोल त्रिकोणमितीय फलनों की सीमाओं की सूची देखें। अब हम दिखाते हैं कि

पूर्णतः समाकलनीय है, जिसका अर्थ है कि सीमा उपस्थित है
[6] सर्व प्रथम, हम मूल के निकट समाकलन को बाउंड करते हैं। शून्य के बारे में कोसाइन के टेलर-श्रृंखला विस्तार का उपयोग करते हुए,

इसलिए,

समाकलन को भागो में विभाजित करना, हमारे निकट है

कुछ स्थिरांक

के लिए इससे पता चलता है कि समाकलन पूर्णतः समाकलनीय है, जिसका अर्थ है कि मूल समाकलन उपस्थित है, और

से

पर संवृत करना वास्तव में सही था और प्रमाण पूर्ण हो गया है।
यह भी देखें
संदर्भ
बाहरी संबंध