लोकल इंटरकनेक्ट नेटवर्क

From Vigyanwiki
Revision as of 00:42, 7 December 2023 by alpha>Mahima Patel

LIN (स्थानीय सम्बंधित नेटवर्क) एक अनुक्रमिक नेटवर्क प्रोटोकॉल होता है, जिसका उपयोग वाहनों में घटकों के मध्य संचार के लिए किया जाता है। यह एक एकल तार, अनुक्रमिक नेटवर्क प्रोटोकॉल होता है जो 40 मीटर की बस लंबाई पर 19.2 Kbit/s तक संचार का समर्थन करता है। कार में प्रयुक्त प्रौद्योगिकियों और सुविधाओं में वृद्धि के साथ साथ, एक किफायती अनुक्रमिक नेटवर्क की आवश्यकता उत्पन्न हुई, क्योंकि कार में प्रत्येक घटक के लिए CAN बस को प्रयुक्त करना बहुत मूल्यवान था। यूरोपीय कार निर्माताओं ने विभिन्न अनुक्रमिक संचार प्रौद्योगिकियों का उपयोग करना प्रारंभ कर दिया था, जिसके फलस्वरूप सामंजस्‍य समस्याएं उत्पन्न होनी प्रारम्भ हो गयी थी।

1990 के समय के अंत में, पांच वाहन निर्माताओं (बीएमडब्ल्यू, वोक्सवैगन समूह, ऑडी, वोल्वो कारें, मेरसेदेज़-बेंज) द्वारा लिन सहायता संघ की स्थापना की गई थी, जिसमें वोल्केनो ऑटोमोटिव समूह और मोटोरोला से आपूर्ति की गई तकनीकें (नेटवर्किंग और हार्डवेयर विशेषज्ञता) सम्मिलित थीं। नए लिन विनिर्देशन का पहला पूर्णतः कार्यान्वित संस्करण (लिन संस्करण 1.3) नवंबर 2002 में प्रकाशित हुआ था। सितंबर 2003 में, क्षमताओं का विस्तार करने और अतिरिक्त निदान सुविधाओं के लिए प्रावधान करने के लिए संस्करण 2.0 प्रस्तुत किया गया था। लिन का उपयोग वाहन की बैटरी विद्युत रेखा संचार स्वचालितयंत्र पर डीसी विद्युत रेखा (डीसी-लिन) ट्रांसीवर पर एक विशेष लिन के साथ भी किया जा सकता है। लिन ओवर डीसी विद्युत रेखा (डीसी-लिन) को आईएसओ/एडब्ल्यूआई 17987-8 के रूप में मानकीकृत किया गया था।[1]

स्वचालन में CAN को आईएसओ तकनीकी प्रबंधन बोर्ड (TMB) द्वारा आईएसओ 17987 श्रृंखला में मानकीकृत लिन आपूर्तिकर्ता आईडी के लिए पंजीकरण प्राधिकरण के रूप में नियुक्त किया गया है।

नेटवर्क टोपोलॉजी

लिन एक प्रसारण (नेटवर्किंग) अनुक्रमिक संचार नेटवर्क होता है जिसमें 16 बिंदु (एक मुख्य बिंदु और सामान्यतः पर 15 अधीन बिंदु तक) सम्मिलित होते हैं।[2][3][4][5]

सभी संदेशों को मुख्य बिंदु द्वारा प्रारंभ किया जाता है, जिसमें अधिकतम एक अधीन बिंदु किसी दिए गए संदेश पहचानकर्ता का उत्तर देता है। मुख्य बिंदु अपने संदेशों का उत्तर देकर अधीन बिंदु के रूप में भी कार्य कर सकता है। चूँकि सभी संचार मुख्य बिंदु द्वारा प्रारंभ किए जाते हैं, इसलिए संघट्‍टन(दूरसंचार) का पता लगाना आवश्यक नहीं होता है।[6]

मुख्य बिंदु और अधीन बिंदु सामान्यतः पर सूक्ष्म नियंत्रक होते हैं, लेकिन लागत, स्थान या विद्युत बचाने के लिए विशेष हार्डवेयर या अनुप्रयोग-विशिष्ट एकीकृत परिपथ में प्रयुक्त किया जा सकता है।

वर्तमान उपयोग छोटे नेटवर्क बनाने के लिए लिन और सरल सेंसर की कम लागत वाली दक्षता को जोड़ते हैं। इन उप-प्रणालियों को बैक-बोन-नेटवर्क (अर्थात् कारों में CAN) द्वारा जोड़ा जा सकता है।[7]

अवलोकन

लिन बस एक लागत प्रभावी अनुक्रमिक संचार प्रोटोकॉल होता है, जो कार के नेटवर्क के भीतर दूरस्थ अनुप्रयोग का प्रभावी ढंग से समर्थन करता है। यह विशेष रूप से वितरित स्वचालितयंत्र अनुप्रयोगों में मेक्ट्रोनिक बिंदुओं के लिए प्रायोजित होता है, लेकिन औद्योगिक अनुप्रयोगों के लिए भी समान रूप से उपयुक्त होता है। इसका उद्देश्य कारों के भीतर पदानुक्रमित नेटवर्क की ओर ले जाने वाले उपलब्ध CAN नेटवर्क को पूरक बनाना होता है।

1990 के समय के अंत में स्थानीय सम्बंधित नेटवर्क (लिन) सहायता संघ की स्थापना पांच यूरोपीय वाहन निर्माताओं, मेंटर ग्राफ़िक्स (पूर्व में वोल्केनो ऑटोमोटिव ग्रुप) और फ्रीस्केल (पूर्व में मोटोरोला, अब NXP) द्वारा की गई थी। नए लिन विनिर्देशन का पहला पूर्णतः कार्यान्वित संस्करण नवंबर 2002 में लिन संस्करण 1.3 के रूप में प्रकाशित किया गया था। सितंबर 2003 में संरचना क्षमताओं का विस्तार करने और महत्वपूर्ण अतिरिक्त लक्षणात्मक सुविधाओं और उपकरण संयोजक के लिए प्रावधान करने के लिए संस्करण 2.0 प्रस्तुत किया गया था।

प्रोटोकॉल की मुख्य विशेषताएं नीचे सूचीबद्ध हैं:

  • बस मध्यस्थता के बिना एक मुख्य नोड, 16 अधीन बिंदु तक। यह नियतात्मक समय प्रतिक्रिया प्राप्त करने के लिए लिन सहायता संघ द्वारा अनुशंसित मान होता है।[8]
  • अधीन नोड स्थिति अनुसन्धान (एसएनपीडी) विद्युत संचार के बाद नोड एड्रेस असाइनमेंट की अनुमति देता है[9]
  • 40 मीटर बस लंबाई पर 19.2 kbit/s तक एकल तार संचार।[8][10] लिन विनिर्देश 2.2 में,[9]गति 20 kbit/s तक होता है।
  • विलंबता समय की प्रत्याभूति।
  • डेटा फ़्रेम की परिवर्तनीय लंबाई (2, 4 और 8 बाइट)।
  • रुपरेखा विस्तारण
  • स्फटिक या सिरेमिक प्रतिध्वनित यंत्र के बिना, समय समकालीनता के साथ मल्टी-कास्ट समर्थन।
  • डेटा जाँच और त्रुटि का पता लगाना।
  • दोषपूर्ण बिंदुओं का पता लगाना।
  • मानक विश्वव्यापी समकालिक प्रापक / ट्रांसमीटर/ अनुक्रमिक संचार पर आधारित कम लागत वाला सिलिकॉन कार्यान्वयन हार्डवेयर.
  • पदानुक्रमित नेटवर्क के लिए व्यवस्थापक।
  • 12 वी का प्रचालक विद्युत दाब।[8]

डेटा को चयन योग्य लंबाई के निश्चित रूप वाले संदेशों को बस में स्थानांतरित किया जाता है। मुख्य बिंदु कार्य एक शीर्ष लेख प्रसारित करता है जिसमें एक सांकेतिक विराम के बाद समकालीन और अभिज्ञाता क्षेत्र होते हैं। अधीन बिंदुएक डेटा फ़्रेम के साथ प्रतिक्रिया करते हैं जिसमें 2, 4 और 8 डेटा बाइट्स और नियंत्रण जानकारी के 3 बाइट्स होते हैं।[9]

लिन संदेश फ़्रेम

एक संदेश में निम्नलिखित क्षेत्र होते हैं:[9]

  • समकालीन समकालीन
  • समकालीन बाइट
  • अभिज्ञाता बाइट
  • डेटा बाइट्स
  • जाँच बाइट

फ़्रेम प्रकार

  1. नियमरहित फ़्रेम : ये सदैव संकेत में रहते है और इनके पहचानकर्ता 0 से 59 (0x00 से 0x3b) की श्रेणी में होते हैं। नियमरहित फ़्रेम के सभी उपभोक्ताओं को फ़्रेम प्राप्त होगा और यह मानते हुए कि कोई त्रुटि नहीं पाई गई इसे अनुप्रयोग के लिए उपलब्ध कराया जाएगा।
  2. इवेंट-ट्रिगर फ़्रेम: इसका उद्देश्य कभी-कभी होने वाली घटनाओं के साथ कई अधीन बिंदुओं के मतदान के लिए बहुत अधिक बस बैंडविड्थ निर्दिष्ट किए बिना लिन क्लस्टर की प्रतिक्रियाशीलता को बढ़ाना है। नियमरहित फ़्रेम का पहला डेटा बाइट इवेंट-ट्रिगर फ़्रेम को सौंपे गए संरक्षित पहचानकर्ता के बराबर होगा। एक अधीन बिंदु संबंधित नियमरहित फ़्रेम के साथ तभी उत्तर देता है जब उसका डेटा मान बदल गया हो। यदि कोई भी अधीन बिंदु कार्य शीर्ष लेख पर प्रतिक्रिया नहीं देता है तो शेष फ़्रेम अवधि स्लॉट शांत हो जाता है और शीर्ष लेख को अनदेखा कर दिया जाता है। यदि एक से अधिक अधीन बिंदु कार्य एक ही फ़्रेम अवधि में शीर्ष लेख पर प्रतिक्रिया करते हैं तो एक टकराव होता है, और मुख्य बिंदु को इवेंट-ट्रिगर फ़्रेम को फिर से अनुरोध करने से पहले सभी संबंधित नियमरहित फ़्रेम का अनुरोध करके टकराव को हल करना होगा।
  3. आवधिक फ़्रेम : यह फ़्रेम आवश्यकतानुसार मुख्य बिंदु द्वारा प्रसारित किया जाता है, इसलिए टकराव नहीं हो होता है । एक छिटपुट फ़्रेम का शीर्ष लेख केवल उसके संबंधित फ़्रेम स्लॉट में भेजा जाएगा जब मुख्य बिंदु कार्य को पता चलेगा कि फ़्रेम में किए गए संकेत को अपडेट किया गया है। छिटपुट फ़्रेम का प्रकाशक सदैव शीर्ष लेख पर प्रतिक्रिया प्रदान करेगा।
  4. डायग्नोस्टिक फ़्रेम . इनमें सदैव डायग्नोस्टिक या कॉन्फ़िगरेशन डेटा होता है और इनमें सदैव आठ डेटा बाइट्स होते हैं। पहचानकर्ता या तो 60 (0x3C) है, जिसे मुख्य बिंदु अनुरोध फ़्रेम कहा जाता है, या 61(0x3D), जिसे अधीन बिंदु  रिस्पॉन्स फ़्रेम कहा जाता है। डायग्नोस्टिक फ़्रेम का शीर्ष लेख तैयार करने से पहले, मुख्य बिंदु कार्य अपने डायग्नोस्टिक मॉड्यूल से पूछता है कि क्या इसे भेजा जाएगा या क्या बस चुप रहेगी। अधीन बिंदु  कार्य अपने डायग्नोस्टिक मॉड्यूल के अनुसार प्रतिक्रिया प्रकाशित और सदस्यता लेते हैं।
  5. उपयोगकर्ता-परिभाषित फ़्रेम. इनमें किसी भी तरह की जानकारी हो सकती है. उनका पहचानकर्ता 62 (0x3E) है। उपयोगकर्ता-परिभाषित फ़्रेम का शीर्ष लेख सदैव तब प्रसारित होता है जब फ़्रेम को आवंटित फ़्रेम स्लॉट संसाधित होता है
  6. आरक्षित फ़्रेम. इनका उपयोग लिन 2.0 क्लस्टर में नहीं किया जाएगा। उनका पहचानकर्ता 63 (0x3F) है।

लिन हार्डवेयर

लिन विनिर्देश को नेटवर्क के भीतर बहुत सस्ते हार्डवेयर-बिंदुओं का उपयोग करने की अनुमति देने के लिए डिज़ाइन किया गया था। यह ऑन-बोर्ड डायग्नोस्टिक्स पर आधारित कम लागत वाला एकल-वायर नेटवर्क होता है।[11] आज की कार नेटवर्किंग टोपोलॉजी में, यूनिवर्सल अतुल्यकालिक रिसीवर/ट्रांसमीटर क्षमता या समर्पित लिन हार्डवेयर वाले माइक्रोनियंत्रक का उपयोग किया जाता है।

माइक्रोनियंत्रक सॉफ्टवेयर द्वारा सभी आवश्यक लिन डेटा (प्रोटोकॉल ...) (आंशिक रूप से) उत्पन्न करता है और एक लिन ट्रांसीवर (सीधे शब्दों में कहें तो, कुछ ऐड-ऑन के साथ एक लेवल शिफ्टर) के माध्यम से लिन नेटवर्क से जुड़ा होता है। लिन बिंदु के रूप में कार्य करना संभावित कार्यक्षमता का मात्र एक भाग होता है।

लिन हार्डवेयर में यह ट्रांसीवर सम्मिलित हो सकता है और अतिरिक्त कार्यक्षमता के बिना शुद्ध लिन बिंदु के रूप में काम करता है।

चूँकि लिन अधीन बिंदु  बिंदुओं यथासंभव सस्ते होने चाहिए, वे क्रिस्टल ऑसिलेटर्स (क्वार्ट्ज या सिरेमिक) के बजाय आरसी ऑसिलेटर्स का उपयोग करके अपनी आंतरिक घड़ियाँ उत्पन्न कर सकते हैं।एक लिन फ़्रेम के भीतर बॉड दर-स्थिरता सुनिश्चित करने के लिए, शीर्ष लेख के भीतर SYNC क्षेत्र का उपयोग किया जाता है।

लिन प्रोटोकॉल

लिन-मुख्य बिंदु लिन बस में भेजना और प्राप्त करना प्रारंभ करने के लिए एक या अधिक पूर्वनिर्धारित I/O अनुसूचीिंग तालिकाओं का उपयोग करता है। इन अनुसूचीिंग तालिकाओं में कम से कम सापेक्ष समय होता है, जहां संदेश भेजना प्रारंभ किया जाता है।

एक लिन फ़्रेम में शीर्ष लेख और रिस्पॉन्स दो भाग होते हैं। शीर्ष लेख सदैव लिन मुख्य बिंदु द्वारा भेजा जाता है, जबकि प्रतिक्रिया या तो एक समर्पित लिन-अधीन बिंदु  या स्वयं लिन मुख्य बिंदु द्वारा भेजी जाती है।

लिन के भीतर प्रेषित डेटा को एक स्टार्ट बिट, एक स्टॉप-बिट और कोई समता नहीं (ब्रेक क्षेत्र में स्टार्ट बिट और स्टॉप बिट नहीं है) के साथ आठ थोड़ा समय बाइट्स के रूप में क्रमिक रूप से प्रसारित किया जाता है। बिट दरें 1 kbit/s से 20 kbit/s के मध्य भिन्न-भिन्न होती हैं।

बस पर डेटा को रिसेसिव (तार्किक उच्च) और प्रमुख (तार्किक निम्न) में विभाजित किया गया है।

समय को सामान्यतः पर लिन मुख्य बिंदु्स स्थिर घड़ी स्रोत द्वारा माना जाता है, सबसे छोटी इकाई एक बिट समय (52 µs @ 19.2 kbit/s) है।

दो बस अवस्थाएँ - स्लीप-मोड और सक्रिय - लिन प्रोटोकॉल के भीतर उपयोग की जाती हैं। जबकि डेटा बस में है, सभी लिन-बिंदुओं को सक्रिय स्थिति में रहने का अनुरोध किया जाता है। एक निर्दिष्ट समय समाप्ति के बाद, बिंदुओं स्लीप मोड में प्रवेश करते हैं और WAKEUP फ़्रेम द्वारा वापस सक्रिय स्थिति में जारी किए जाएंगे।

यह फ़्रेम बस में गतिविधि का अनुरोध करने वाले किसी भी बिंदु द्वारा भेजा जा सकता है, या तो लिन मुख्य बिंदु अपने आंतरिक अनुसूची का पालन कर रहा है, या संलग्न लिन अधीन बिंदु  में से एक को इसके आंतरिक सॉफ़्टवेयर अनुप्रयोग द्वारा सक्रिय किया जा रहा है।

सभी बिंदुओं जागृत होने के बाद, मुख्य बिंदु अगले पहचानकर्ता को अनुसूची करना जारी रखता है।

शीर्षलेख

शीर्ष लेख में पाँच भाग होते हैं:

तोड़ना:

BREAK क्षेत्र का उपयोग शीर्ष लेख के निम्नलिखित भागों को सुनने के लिए सभी संलग्न लिन अधीन बिंदु  को सक्रिय करने के लिए किया जाता है। इसमें एक स्टार्ट बिट और कई प्रमुख बिट्स होते हैं। लंबाई कम से कम 11-बिट गुना है; आज तक मानक उपयोग 13-बिट बार है, और इसलिए यह मूल डेटा प्रारूप से भिन्न है।

इसका उपयोग यह सुनिश्चित करने के लिए किया जाता है कि निर्दिष्ट सीमाओं में सेट बस बॉड दर से भिन्न मुख्य घड़ी के साथ सुनने वाले लिन बिंदुओं BREAK को संचार प्रारंभ करने वाले फ़्रेम के रूप में पहचानेंगे, न कि सभी मान शून्य (हेक्साडेसिमल 0x00) के साथ एक मानक डेटा बाइट के रूप में।

साथ-साथ करना:

SYNC हेक्साडेसिमल 0x55 के मान के साथ एक मानक डेटा प्रारूप बाइट है।

आरसी ऑसिलेटर पर चलने वाले लिन अधीन बिंदु  बस पर वर्तमान बिट समय (मुख्य बिंदु का सामान्य समय) को मापने और आंतरिक बॉड दर की पुनर्गणना करने के लिए बढ़ते और गिरते किनारों की एक निश्चित मात्रा के मध्य की दूरी का उपयोग करेंगे।

इंटर बाइट स्पेस:

इंटर बाइट स्पेस का उपयोग बस घबराहट को समायोजित करने के लिए किया जाता है। यह लिन विनिर्देश के अंतर्गत एक वैकल्पिक घटक है। यदि सक्षम किया गया है, तो सभी लिन बिंदुओं को इससे निपटने के लिए तैयार रहना चाहिए।

BREAK और SYNC क्षेत्र के मध्य एक इंटर बाइट स्पेस होता है, एक SYNC और IDENTIFIER के मध्य, एक पेलोड और चेकसम के मध्य और एक पेलोड में प्रत्येक डेटा बाइट के मध्य होता है।

पहचानकर्ता:

पहचानकर्ता एक या कई संलग्न लिन अधीन बिंदु  बिंदुओं द्वारा पूरी की जाने वाली एक क्रिया को परिभाषित करता है। नेटवर्क डिज़ाइनर को डिज़ाइन चरण में दोष-मुक्त कार्यक्षमता सुनिश्चित करनी होती है (एक अधीन बिंदु  को एक फ़्रेम समय में बस में डेटा भेजने की अनुमति होती है)।

यदि पहचानकर्ता एक भौतिक लिन अधीन बिंदु  को प्रतिक्रिया भेजने के लिए प्रेरित करता है, तो पहचानकर्ता को Rx-पहचानकर्ता कहा जा सकता है।

यदि मुख्य बिंदु का अधीन कार्य बस को डेटा भेजता है, तो इसे टीएक्स-पहचानकर्ता कहा जा सकता है।

प्रतिक्रिया स्थान:

रिस्पॉन्स स्पेस, पहचानकर्ता क्षेत्र और पहले डेटा बाइट के मध्य का समय है जो लिन फ़्रेम के लिन रिस्पॉन्स भाग को प्रारंभ करता है। जब एक विशेष लिन फ़्रेम पूरी तरह से प्रसारित होता है, शीर्ष लेख + रिस्पांस, लिन मुख्य बिंदु द्वारा, लिन मुख्य बिंदु शीर्ष लेख भेजने के बाद प्रतिक्रिया कब भेजनी है इसकी गणना करने के लिए पूर्ण प्रतिक्रिया स्थान समय का उपयोग करेगा। यदि लिन फ़्रेम का प्रतिक्रिया भाग भौतिक रूप से भिन्न अधीन बिंदु से आ रहा है, तो प्रत्येक बिंदु (मुख्य बिंदु और अधीन बिंदु ) अपने टाइमआउट गणना में प्रतिक्रिया स्थान समय का 50% उपयोग करेगा।

प्रतिक्रिया

प्रतिक्रिया संलग्न लिन अधीन बिंदु  कार्यों में से एक द्वारा भेजी जाती है और डेटा और अंततः में विभाजित होती है।[9]

डेटा:

प्रतिक्रिया देने वाला अधीन बस को शून्य से आठ डेटा बाइट्स भेज सकता है। डेटा की मात्रा अनुप्रयोग डिज़ाइनर द्वारा तय की जाती है और उस अनुप्रयोग के लिए प्रासंगिक डेटा को प्रतिबिंबित करती है जिसमें लिन अधीन बिंदु  चलता है।

चेकसम:

लिन के भीतर दो चेकसम-प्रतिरूपण उपलब्ध हैं - पहला चेकसम है जिसमें केवल डेटा बाइट्स सम्मिलित हैं (संस्करण 1.3 तक विनिर्देश), दूसरे में इसके अलावा पहचानकर्ता सम्मिलित है (संस्करण 2.0+)।

प्रयुक्त चेकसम प्रतिरूपण अनुप्रयोग डिजाइनर द्वारा पूर्व-परिभाषित है।

अधीन बिंदु स्थिति का पता लगाना (एसएनपीडी) या ऑटोएड्रेसिंग

ये विधियाँ लिन बस पर अधीन बिंदु  बिंदुओं की स्थिति का पता लगाने की अनुमति देती हैं और एक अद्वितीय बिंदु एड्रेस (NAD) के असाइनमेंट की अनुमति देती हैं।[12]

  • रेखा प्रोग्रामिंग या कनेक्टर पिन प्रोग्रामिंग के अंत के बिना समान या समान उपकरणों को बस से कनेक्ट करने की अनुमति देता है।

प्रतिबंध:

  • सभी ऑटो-एड्रेसिंग अधीन बिंदु एक पंक्ति में होने चाहिए
    • मानक अधीन को किसी भी तरह से जोड़ा जा सकता है
SNPD Method SNPD Method ID Company
Extra wire daisy chain 0x01 NXP (formerly Philips)
Bus shunt method 0x02 Elmos Semiconductor
Reserved 0x03 TBD
Reserved 0x04 TBD
Reserved 0xFF TBD

अतिरिक्त तार डेज़ी श्रृंखला (XWDC)

प्रत्येक अधीन बिंदु  बिंदु को दो अतिरिक्त पिन, एक इनपुट, डी प्रदान करना होता है1, और एक आउटपुट, डी2.

  • पहला एसएनपीडी बिंदु इनपुट डी1 या तो जीएनडी पर सेट है या मुख्य बिंदु के आउटपुट से जुड़ा है।
    • पहले बिंदु का आउटपुट, डी2, इनपुट से जुड़ा है, डी1 दूसरे बिंदु का, इत्यादि जिसके परिणामस्वरूप डेज़ी श्रृंखला बनती है।

प्रत्येक कॉन्फ़िगरेशन पिन डीx (x=1-2) में स्थिति का पता लगाने में सहायता के लिए अतिरिक्त परिपथरी है।

  1. वी पर स्विच करने योग्य प्रतिरोधी पुल-अपbat
  2. GND तक पुल-डाउन करें
  3. तुलनित्र वी को संदर्भित करता हैbat/2

XWDC ऑटो-एड्रेसिंग प्रक्रिया

प्रक्रिया की शुरुआत में किसी भी एसएनपीडी डिवाइस को एनएडी निर्दिष्ट नहीं किया गया है

1 पहला ऑटो-एड्रेसिंग लिन संदेश

1.1 सभी आउटपुट (डी2) को उच्च स्तर पर सेट किया गया है, सभी पुल-डाउन बंद कर दिए गए हैं
1.2 पहला एसएनपीडी बिंदु चुना गया है। इसकी पहचान इनपुट डी से की जाती है1 कम (हार्डवायर्ड)।
1.3 चयनित बिंदु लिन कॉन्फ़िगरेशन संदेश से पता लेता है
1.4 पता लगाया गया बिंदु आउटपुट डी पर पुल-डाउन चालू करता है2

2 बाद के ऑटो-एड्रेसिंग लिन संदेश

2.1 पहला गैर-संबोधित एसएनपीडी बिंदु चयनित है। इसकी पहचान इनपुट डी से की जाती है1 निम्न (डी2 पिछले बिंदु का)।
2.2 चयनित बिंदु लिन कॉन्फ़िगरेशन संदेश से पता लेता है
2.3 पता लगाया गया बिंदु आउटपुट डी पर पुल-डाउन चालू करता है2
2.4 चरण 2.1-2.4 तब तक दोहराए जाते हैं जब तक कि सभी अधीन बिंदु  बिंदुओं को एक पता नहीं सौंपा जाता है

3 एड्रेसिंग प्रक्रिया को पूरा करते हुए सभी पुल-अप और पुल-डाउन बंद कर दिए जाते हैं

बस शंट विधि (बीएसएम)

प्रत्येक अधीन बिंदु  बिंदु में दो लिन पिन होते हैं

  1. बस_में
  2. बस_बाहर

स्थिति का पता लगाने में सहायता के लिए प्रत्येक अधीन बिंदु  बिंदु को मानक लिन परिपथरी की तुलना में कुछ अतिरिक्त सर्किटरी की आवश्यकता होती है।

  1. मानक पुल-अप स्विचेबल होना चाहिए
  2. वी से स्विच करने योग्य 2 एमए वर्तमान स्रोतbat
  3. शंट अवरोधक
  4. विभेदक प्रवर्धक
  5. एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण

बीएसएम ऑटो-एड्रेसिंग प्रक्रिया

प्रक्रिया की शुरुआत में, किसी भी एसएनपीडी डिवाइस में एनएडी निर्दिष्ट नहीं है। ऑटोएड्रेसिंग रूटीन सिंक क्षेत्र के दौरान निष्पादित किया जाता है। सिंक क्षेत्र को तीन चरणों में विभाजित किया गया है:

1 ऑफसेट वर्तमान माप

1.1 सभी आउटपुट पुल-अप और वर्तमान स्रोत बंद हैं
1.2 बस धारा मापी जाती है, Ioffset2 पुल-अप मोड
2.1 पुल-अप चालू हैं और वर्तमान स्रोत बंद हैं
2.2 बस धारा मापी जाती है, IPU:2.3 ΔI = I के साथ बिंदुओंPU-मैंoffset<1 mA चयनित हैं

3 वर्तमान स्रोत मोड

3.1 चयनित बिंदुओं वर्तमान स्रोत को चालू करते हैं और अन्य पुल-अप को बंद करते हैं
3.2 बस धारा मापी जाती है, ICS:3.3 ΔI = I के साथ बिंदुCS-मैंoffset<1 mA को अंतिम बिंदु के रूप में पहचाना गया है
3.4 वर्तमान स्रोत बंद कर दिए गए हैं और पुल-अप चालू कर दिए गए हैं
3.5 अंतिम बिंदु लिन कॉन्फ़िगरेशन संदेश में निहित पते को स्वीकार करेगा

यह तकनीक पेटेंट ईपी 1490772 बी1 और यूएस 7091876 द्वारा कवर की गई है।

लिन लाभ

  • प्रयोग करने में आसान
  • घटक उपलब्ध हैं
  • CAN और अन्य संचार बसों से सस्ता
  • हार्नेस में कमी
  • अधिक विश्वसनीय वाहन
  • विस्तार को प्रयुक्त करना आसान है।
  • कोई प्रोटोकॉल लाइसेंस शुल्क आवश्यक नहीं है

लिन CAN बस का पूर्ण प्रतिस्थापन नहीं है। लेकिन जहां कम लागत आवश्यक है और गति/बैंडविड्थ महत्वपूर्ण नहीं है, वहां लिन बस एक अच्छा विकल्प है। सामान्यतः पर, इसका उपयोग उन उप-प्रणालियों में किया जाता है जो वाहन के प्रदर्शन या सुरक्षा के लिए महत्वपूर्ण नहीं हैं - कुछ उदाहरण नीचे दिए गए हैं।

अनुप्रयोग

Application segments Specific लिन application examples
Roof Sensor, light sensor, light control, sun roof
Steering wheel Cruise control, wiper, turning light, climate control, radio, wheel lock
Seat Seat position motors, occupant sensors, control panel
Engine Sensors, small motors, cooलिनg fan motors
Grille Grille shutter
Climate Small motors, control panel
Door Mirror, central ECU, mirror switch, window lift, seat control switch, door lock
Illumination Vehicle trim enhancement, sill plates illuminated with RGB LED


सम्बोधन

लिन में एड्रेसिंग एक NAD (बिंदु एड्रेस) के साथ हासिल की जाती है जो PID (संरक्षित पहचानकर्ता) का हिस्सा है। NAD मान 7 बिट्स पर हैं, इसलिए 1 से 127 (0x7F) की सीमा में हैं और यह आपूर्तिकर्ता आईडी, फ़ंक्शन आईडी और वेरिएंट आईडी की एक संरचना है।

आप ऑटोमेशन में CAN से संपर्क करके आपूर्तिकर्ता आईडी प्राप्त कर सकते हैं जो ऐसे पहचानकर्ताओं के असाइनमेंट के लिए जिम्मेदार प्राधिकरण है।

यह भी देखें

संदर्भ

  1. . "ISO/AWI 17987-8".
  2. Mary Tamar Tan, Brian Bailey, Han Lin. "Microchip AN2059: LIN Basics and Implementation of the MCC LIN Stack Library on 8-Bit PIC Microcontrollers".
  3. "ATAN0049: Two-wire LIN Networking".
  4. Steve Winder. "Power Supplies for LED Driving". p. 284
  5. "The LIN Short Story".
  6. "लिन अवधारणा". LIN Overview. LIN Administration. Archived from the original on 5 October 2011. Retrieved 28 October 2011.
  7. "लक्ष्य अनुप्रयोग". LIN Overview. LIN Administration. Archived from the original on 5 October 2011. Retrieved 28 October 2011.
  8. 8.0 8.1 8.2 "क्लेम्सन वाहन इलेक्ट्रॉनिक्स प्रयोगशाला: ऑटोमोटिव बसें". Archived from the original on 2012-04-14. Retrieved 2009-01-14. 090114 cvel.clemson.edu
  9. 9.0 9.1 9.2 9.3 9.4 LIN Specification Package Rev. 2.2a Archived 2008-04-26 at the Wayback Machine
  10. "लिन बस विवरण, ऑटोमोटिव बस, स्थानीय इंटरकनेक्ट नेटवर्क". 090114 इंटरफ़ेसबस.कॉम
  11. LIN Technical Overview Archived 2011-07-19 at the Wayback Machine
  12. Anand Gopalan, Akeem Whitehead. "Automatic Slave Node Position Detection (SNPD)".


बाहरी संबंध