सूचना बीजगणित

From Vigyanwiki
Revision as of 23:03, 7 December 2023 by alpha>Abhay Mishra

सूचना बीजगणित शब्द सूचना प्रसंस्करण की गणितीय तकनीकों को संदर्भित करता है। शास्त्रीय सूचना सिद्धांत क्लाउड शैनन पर वापस जाता है। यह संचार और भंडारण को देखते हुए सूचना प्रसारण का सिद्धांत है। हालाँकि, अब तक इस बात पर विचार नहीं किया गया है कि जानकारी विभिन्न स्रोतों से आती है और इसलिए यह आमतौर पर संयुक्त होती है। शास्त्रीय सूचना सिद्धांत में इसकी भी उपेक्षा की गई है कि कोई व्यक्ति सूचना के टुकड़े से उन हिस्सों को निकालना चाहता है जो विशिष्ट प्रश्नों के लिए प्रासंगिक हैं।

इन परिचालनों का गणितीय वाक्यांशीकरण सूचना के बीजगणित की ओर ले जाता है, जो सूचना प्रसंस्करण के बुनियादी तरीकों का वर्णन करता है। इस तरह के बीजगणित में कंप्यूटर विज्ञान की कई औपचारिकताएँ शामिल होती हैं, जो सतह पर भिन्न प्रतीत होती हैं: संबंधपरक डेटाबेस, औपचारिक तर्क की कई प्रणालियाँ या रैखिक बीजगणित की संख्यात्मक समस्याएं। यह सूचना प्रसंस्करण की सामान्य प्रक्रियाओं के विकास की अनुमति देता है और इस प्रकार विशेष रूप से वितरित सूचना प्रसंस्करण के कंप्यूटर विज्ञान के बुनियादी तरीकों के एकीकरण की अनुमति देता है।

जानकारी सटीक प्रश्नों से संबंधित है, विभिन्न स्रोतों से आती है, एकत्रित की जानी चाहिए, और रुचि के प्रश्नों पर ध्यान केंद्रित किया जा सकता है। इन विचारों से शुरू होकर, सूचना बीजगणित (Kohlas 2003) संरचना (गणितीय तर्क)#कई-क्रमबद्ध संरचनाएं|दो-क्रमबद्ध बीजगणित हैं , कहाँ अर्धसमूह है, जो सूचना के संयोजन या एकत्रीकरण का प्रतिनिधित्व करता है, डोमेन सिद्धांतों (प्रश्नों से संबंधित) का जाली (क्रम) है जिसका आंशिक क्रम डोमेन या प्रश्न की ग्रैन्युलैरिटी को दर्शाता है, और मिश्रित ऑपरेशन जानकारी के फोकस या निष्कर्षण का प्रतिनिधित्व करता है।

सूचना और उसके संचालन

अधिक सटीक रूप से, दो-क्रम वाले बीजगणित में , निम्नलिखित परिचालन परिभाषित हैं

Combination
Focusing
            

इसके अतिरिक्त, में सामान्य जाली संचालन (मिलना और जुड़ना) परिभाषित हैं।

अभिगृहीत और परिभाषा

द्वि-क्रमित बीजगणित के अभिगृहीत , जाली के सिद्धांतों के अलावा :

Semigroup
is a commutative semigroup under combination with a neutral element (representing vacuous information).
Distributivity of Focusing over Combination

To focus an information on combined with another information to domain , one may as well first focus the second information to and then combine.

Transitivity of Focusing

To focus an information on and , one may focus it to .

Idempotency

An information combined with a part of itself gives nothing new.

Support
such that

Each information refers to at least one domain (question).

            

दो प्रकार का बीजगणित इन सिद्धांतों को संतुष्ट करना सूचना बीजगणित कहलाता है।

जानकारी का क्रम

सूचना का आंशिक क्रम परिभाषित करके प्रस्तुत किया जा सकता है अगर . इस का मतलब है कि की तुलना में कम जानकारीपूर्ण है यदि इसमें कोई नई जानकारी नहीं जोड़ी जाती है . अर्धसमूह इस आदेश के सापेक्ष अर्धजाल है, अर्थात . किसी भी डोमेन से संबंधित (प्रश्न) परिभाषित करके आंशिक आदेश प्रस्तुत किया जा सकता है अगर . यह सूचना सामग्री के क्रम का प्रतिनिधित्व करता है और डोमेन के सापेक्ष (प्रश्न) .

लेबल की गई जानकारी बीजगणित

जोड़े , कहाँ और ऐसा है कि लेबल सूचना बीजगणित बनाएं। अधिक सटीक रूप से, दो-क्रम वाले बीजगणित में , निम्नलिखित परिचालन परिभाषित हैं

Labeling
Combination
Projection
            


सूचना बीजगणित के मॉडल

यहां सूचना बीजगणित के उदाहरणों की अधूरी सूची दी गई है:

कार्यान्वित उदाहरण: संबंधपरक बीजगणित

होने देना प्रतीकों का समूह हो, जिसे विशेषताएँ (या स्तंभ नाम) कहा जाता है। प्रत्येक के लिए होने देना गैर-रिक्त सेट हो, विशेषता के सभी संभावित मानों का सेट . उदाहरण के लिए, यदि

, तब  सकना

जबकि, स्ट्रिंग्स का सेट हो और दोनों गैर-ऋणात्मक पूर्णांकों का समुच्चय हैं।

होने देना . एक-टुपल फ़ंक्शन है ताकि और प्रत्येक के लिए सेट के सभी -टुपल्स द्वारा निरूपित किया जाता है . के लिए -टुपल और उपसमुच्चय

प्रतिबंध के रूप में परिभाषित किया गया है -टुपल ताकि सभी के लिए .

एक रिश्ता ऊपर का सेट है -ट्यूपल्स, यानी का उपसमुच्चय . गुणों का समुच्चय का डोमेन कहा जाता है और द्वारा निरूपित किया गया . के लिए का प्रक्षेपण पर परिभाषित किया गया निम्नलिखित नुसार:

किसी रिश्ते का जुड़ना ऊपर और रिश्ता ऊपर है इस प्रकार परिभाषित:

उदाहरण के तौर पर, आइए और निम्नलिखित संबंध बनें:

फिर का जोड़ और है:

प्राकृतिक जुड़ाव के साथ संबंधपरक डेटाबेस संयोजन और सामान्य प्रक्षेपण के रूप में सूचना बीजगणित है.

तब से संचालन अच्छी तरह से परिभाषित हैं

  • अगर , तब .

यह देखना आसान है कि रिलेशनल डेटाबेस किसी लेबल के सिद्धांतों को संतुष्ट करते हैं

सूचना बीजगणित:

अर्धसमूह
और
परिवर्तनशीलता
यदि , तब .
संयोजन
यदि और , तब .
नपुंसकता
यदि , तब .
समर्थन
यदि , तब .

कनेक्शन

मूल्यांकन बीजगणित
निष्क्रियता सिद्धांत को छोड़ने से मूल्यांकन बीजगणित होता है। इन सिद्धांतों का परिचय किसके द्वारा दिया गया है? (Shenoy & Shafer 1990)स्थानीय संगणना योजनाओं को सामान्य बनाने के लिए (Lauritzen & Spiegelhalter 1988) बायेसियन नेटवर्क से लेकर अधिक सामान्य औपचारिकताओं तक, जिसमें विश्वास कार्य, संभावना क्षमताएं आदि शामिल हैं। (Kohlas & Shenoy 2000). विषय पर पुस्तक-लंबाई प्रदर्शनी के लिए देखें Pouly & Kohlas (2011).
डोमेन और सूचना प्रणाली
संक्षिप्त सूचना बीजगणित (Kohlas 2003) स्कॉट डोमेन और स्कॉट सूचना प्रणाली से संबंधित हैं (Scott 1970);(Scott 1982);(Larsen & Winskel 1984).
अनिश्चित जानकारी
सूचना बीजगणित में मूल्यों के साथ यादृच्छिक चर संभाव्य तर्क प्रणालियों का प्रतिनिधित्व करते हैं (Haenni, Kohlas & Lehmann 2000).
अर्थ संबंधी जानकारी
सूचना बीजगणित फोकस और संयोजन के माध्यम से जानकारी को प्रश्नों से जोड़कर शब्दार्थ का परिचय देते हैं (Groenendijk & Stokhof 1984);(Floridi 2004).
सूचना प्रवाह
सूचना बीजगणित, विशेष वर्गीकरण में, सूचना प्रवाह से संबंधित हैं (Barwise & Seligman 1997).
वृक्ष अपघटन
सूचना बीजगणित को पदानुक्रमित वृक्ष संरचना में व्यवस्थित किया जाता है, और छोटी समस्याओं में विघटित किया जाता है।
अर्धसमूह सिद्धांत
...
संरचनागत मॉडल
ऐसे मॉडल को सूचना बीजगणित के ढांचे के भीतर परिभाषित किया जा सकता है: https://arxiv.org/abs/1612.02587
सूचना और मूल्यांकन बीजगणित की विस्तारित स्वयंसिद्ध नींव
सशर्त स्वतंत्रता की अवधारणा सूचना बीजगणित के लिए बुनियादी है और सशर्त स्वतंत्रता के आधार पर सूचना बीजगणित की नई स्वयंसिद्ध नींव, पुराने का विस्तार (ऊपर देखें) उपलब्ध है: https://arxiv। org/abs/1701.02658

ऐतिहासिक जड़ें

सूचना बीजगणित के लिए अभिगृहीत प्राप्त होते हैं (शेनॉय और शैफर, 1990) में प्रस्तावित स्वयंसिद्ध प्रणाली, यह भी देखें (शेफर, 1991)।

संदर्भ

  • Barwise, J.; Seligman, J. (1997), Information Flow: The Logic of Distributed Systems, Cambridge U.K.: Number 44 in Cambridge Tracts in Theoretical Computer Science, Cambridge University Press
  • Bergstra, J.A.; Heering, J.; Klint, P. (1990), "Module algebra", Journal of the ACM, 73 (2): 335–372, doi:10.1145/77600.77621, S2CID 7910431
  • Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie, G. (1999), "Semiring-based CSPs and valued CSPs: Frameworks, properties, and comparison", Constraints, 4 (3): 199–240, doi:10.1023/A:1026441215081, S2CID 17232456, archived from the original on March 10, 2022
  • Bistarelli, Stefano; Montanari, Ugo; Rossi, Francesca (1997), "Semiring-based constraint satisfaction and optimization", Journal of the ACM, 44 (2): 201–236, CiteSeerX 10.1.1.45.5110, doi:10.1145/256303.256306, S2CID 4003767
  • de Lavalette, Gerard R. Renardel (1992), "Logical semantics of modularisation", in Egon Börger; Gerhard Jäger; Hans Kleine Büning; Michael M. Richter (eds.), CSL: 5th Workshop on Computer Science Logic, Volume 626 of Lecture Notes in Computer Science, Springer, pp. 306–315, ISBN 978-3-540-55789-0
  • Floridi, Luciano (2004), "Outline of a theory of strongly semantic information" (PDF), Minds and Machines, 14 (2): 197–221, doi:10.1023/b:mind.0000021684.50925.c9, S2CID 3058065
  • Groenendijk, J.; Stokhof, M. (1984), Studies on the Semantics of Questions and the Pragmatics of Answers, PhD thesis, Universiteit van Amsterdam
  • Haenni, R.; Kohlas, J.; Lehmann, N. (2000), "Probabilistic argumentation systems" (PDF), in J. Kohlas; S. Moral (eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems, Dordrecht: Volume 5: Algorithms for Uncertainty and Defeasible Reasoning, Kluwer, pp. 221–287, archived from the original on January 25, 2005
  • Halmos, Paul R. (2000), "An autobiography of polyadic algebras", Logic Journal of the IGPL, 8 (4): 383–392, doi:10.1093/jigpal/8.4.383, S2CID 36156234
  • Henkin, L.; Monk, J. D.; Tarski, A. (1971), Cylindric Algebras, Amsterdam: North-Holland, ISBN 978-0-7204-2043-2
  • Jaffar, J.; Maher, M. J. (1994), "Constraint logic programming: A survey", Journal of Logic Programming, 19/20: 503–581, doi:10.1016/0743-1066(94)90033-7
  • Kohlas, J. (2003), Information Algebras: Generic Structures for Inference, Springer-Verlag, ISBN 978-1-85233-689-9
  • Kohlas, J.; Shenoy, P.P. (2000), "Computation in valuation algebras", in J. Kohlas; S. Moral (eds.), Handbook of Defeasible Reasoning and Uncertainty Management Systems, Volume 5: Algorithms for Uncertainty and Defeasible Reasoning, Dordrecht: Kluwer, pp. 5–39
  • Kohlas, J.; Wilson, N. (2006), Exact and approximate local computation in semiring-induced valuation algebras (PDF), Technical Report 06-06, Department of Informatics, University of Fribourg, archived from the original on September 24, 2006
  • Larsen, K. G.; Winskel, G. (1984), "Using information systems to solve recursive domain equations effectively", in Gilles Kahn; David B. MacQueen; Gordon D. Plotkin (eds.), Semantics of Data Types, International Symposium, Sophia-Antipolis, France, June 27–29, 1984, Proceedings, vol. 173 of Lecture Notes in Computer Science, Berlin: Springer, pp. 109–129
  • Lauritzen, S. L.; Spiegelhalter, D. J. (1988), "Local computations with probabilities on graphical structures and their application to expert systems", Journal of the Royal Statistical Society, Series B, 50: 157–224
  • Pouly, Marc; Kohlas, Jürg (2011), Generic Inference: A Unifying Theory for Automated Reasoning, John Wiley & Sons, ISBN 978-1-118-01086-0
  • Scott, Dana S. (1970), Outline of a mathematical theory of computation, Technical Monograph PRG–2, Oxford University Computing Laboratory, Programming Research Group
  • Scott, D.S. (1982), "Domains for denotational semantics", in M. Nielsen; E.M. Schmitt (eds.), Automata, Languages and Programming, Springer, pp. 577–613
  • Shafer, G. (1991), An axiomatic study of computation in hypertrees, Working Paper 232, School of Business, University of Kansas
  • Shenoy, P. P.; Shafer, G. (1990). "Axioms for probability and belief-function proagation". In Ross D. Shachter; Tod S. Levitt; Laveen N. Kanal; John F. Lemmer (eds.). Uncertainty in Artificial Intelligence 4. pp. 169–198. doi:10.1016/B978-0-444-88650-7.50019-6. hdl:1808/144. ISBN 978-0-444-88650-7. {{cite book}}: |journal= ignored (help)
  • Wilson, Nic; Mengin, Jérôme (1999), "Logical deduction using the local computation framework", in Anthony Hunter; Simon Parsons (eds.), Symbolic and Quantitative Approaches to Reasoning and Uncertainty, European Conference, ECSQARU'99, London, UK, July 5–9, 1999, Proceedings, volume 1638 of Lecture Notes in Computer Science, Springer, pp. 386–396, ISBN 978-3-540-66131-3